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1 Comparison to deterministic modifier theory
In this section, we rederive a key result from classical modifier theory known as the “mean fitness prin-
ciple” (20). This theory predicts that in an infinitely large asexual population, natural selection will favor
modifiers that increase the long-term mean fitness of the population. Our derivation closely follows the one
given in Ref. (21), as well as related work on mutators (81–83). We reproduce it here for completeness,
using the same notation employed in our more general analysis below.

To establish this result, we note that in the absence of genetic drift (# = 1), the deterministic dynamics
of a well-mixed asexual population can be written in the general form,

m 5 (Æ6)

mC

=
⇥
- (Æ6) � - (C)

⇤
5 (Æ6) +

’
Æ6
0

" (Æ6
0 � Æ6) 5 (Æ6

0

) �

’
Æ6

" (Æ6 � Æ6
0

) 5 (Æ6) , (S1)

where 5 (Æ6, C) is the frequency of genotype Æ6, - (Æ6) is the (log) fitness of genotype Æ6, - (C) =
Õ

Æ6 - (Æ6) 5 (Æ6, C)

is the mean fitness of the population, and " (Æ6 � Æ60) is the mutation rate from genotype Æ6 to Æ60. The fate of
a general evolvability modifier allele can be analyzed by introducing an analogous set of equations,
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where 5<(Æ6, C) is the frequency of individuals with the mutant allele at the modifier locus and genotype
Æ6 elsewhere, -<(Æ6) is genotype-to-fitness map for the modifier, "<(Æ6 � Æ60) is the corresponding set of
mutation rates, and the mean fitness in Eqs. (S1) and (S2) now sums over both the mutant and wildtype
lineages,

- (C) =
’
Æ6

- (Æ6) 5 (Æ6, C) +

’
Æ6

-<(Æ6) 5<(Æ6, C) . (S3)

In principle, this model allows for arbitrary changes to arbitrary non-linear fitness landscapes, encapsulating
all possible forms of epistasis (84).

The solutions to this coupled system of equations can be written in the general form

5<(Æ6, C) = 5<(C)⌘<(Æ6, C) , 5 (Æ6, C) = [1 � 5<(C)]⌘F (Æ6, C) , (S4a)

where 5<(C), ⌘<(C), and ⌘F (C) satisfy the related set of equations,
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In this notation, ⌘<(Æ6, C) represents the re-normalized genotype distribution within the modifier lineage,
⌘F (Æ6, C) denotes the corresponding distribution within the wildtype, -<(C) and -F (C) represent the mean
fitnesses of each lineage, and 5<(C) denotes the total frequency of the modifier.

This change-of-variables shows that the total frequency of the modifier lineage only depends on the
relative values of the mean fitnesses, -<(C) and -F (C), yielding the time-dependent solution,

log


5<(C)

1 � 5<(C)

�
= log


5<(0)

1 � 5<(C)

�
+

π
C

0

⇥
-<(C
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0
)
⇤
3C

0
. (S5)

This shows that at long times (C ! 1) the lineage that will dominate the population is the one with the
higher value of

Ø
1

0
- 8 (C

0
)3C

0. These mean fitnesses can be predicted from the dynamics of the intra-lineage
frequencies, ⌘<(Æ6, C) and ⌘F (Æ6, C), which decouple from each other and from the total size of 5<(C). In most
cases of interest, the mean fitness of each lineage will approach an equilibrium value, - 8 (C) � - 8 , which
may be a complicated function of -8 (Æ6) and "8 (Æ6 ! Æ60), but is otherwise independent of the surrounding
population. Equation (S5) then shows that the modifier will take over the population if and only if it increases
the equilibrium mean fitness. This generalizes the “mean fitness principle” derived in previous work (20).

However, this deterministic calculation neglects two key factors that are relevant for any large but finite
population. First, the mean-field dynamics in Eqs. (S1) and (S2) neglect the random occurrence of new
mutations and the stochastic fluctuations they experience while rare. These fluctuations can dramatically
influence the dynamics of the mean fitness – particularly when multiple beneficial mutations are available (51).
In addition, the deterministic calculation neglects the possibility that the mutant or wildtype lineage may fix
before their long-term benefits in Eq. (S5) are fully realized. As we will see below, both of these effects
will become extremely important in the adapting populations that we analyze in this work. Interestingly,
we will see that in some cases, it will be possible to account for these effects in an approximate manner by
inserting a upper limit on the integral in Eq. (S5) (SI Section 4.1.7), providing a conceptual link between
classical modifier theory and the more complex scenarios studied in this work. Identifying such cases and
their appropriate time horizons is the goal of the next several sections.

2 Evolvability modifiers in the successive mutations regime
Another useful limit occurs in small populations, where the production of beneficial mutations is sufficiently
rare that adaptation proceeds via a sequence of discrete selective sweeps. In this regime, the fate of a given
modifier will strongly depend on its ability to generate the next beneficial mutation. We can formalize this
idea by defining the local distribution of fitness effects (DFE),

`(B |Æ6) =
’
Æ60

" (Æ6 � Æ60) · X(B � - ( Æ60) + - (Æ6)) , (S6)

which tabulates the fitness effects of all the mutations that can be accessed from a given genotype Æ6. Modifier
individuals will have their own corresponding set of DFEs,

`<(B |Æ6) =
’
Æ60

"<(Æ6 � Æ60) · X(B � -<( Æ6
0) + -<(Æ6)) , (S7)

along with a direct cost or benefit

B<(Æ6) = -<(Æ6) � - (Æ6) . (S8)
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The distributions in Eqs. (S6) and (S7) can be computed for any epistatic fitness landscape, and will constitute
the key input parameters in our analysis below.

In the absence of any modifier mutations, the evolutionary dynamics of the successive sweeps regime
are well described by previous work (51). The wildtype population produces new beneficial mutations
at a total rate #*1 = # ·

Ø
1

0
`(B |Æ6)3B per generation. Most of these mutations will drift to extinction

before they reach appreciable frequencies. However, with probability ?est⇡2B, a lucky mutant will fluctuate
to a sufficiently large frequency ( 5⇡1/2#B) that it begins to grow deterministically [mC 5 ⇡ B 5 (1 � 5 )],
and will sweep through the population on a timescale of order )fix = 2

B
log(#B). The population will

produce these successful mutations at a total rate _ =
Ø
1

0
#`(B |Æ6) · 2B = 2#*1B per generation, where

B ⌘
Ø
B`(B |Æ6) 3B/

Ø
`(B |Æ6)3B is the average beneficial fitness effect that is accessible to the current genotype.

This implies that the typical waiting time for the next sweep event is )2 ⇡ 1/2#*1B generations. The
condition that successive sweeps will not interfere with each requires that )fix ⌧ )2, which requires that
#*1log [#B] ⌧ 1 (51). This limit is also known as the “strong selection, weak mutation regime” (SSWM).

A general evolvability modifier (`(B) ! `<(B)) will produce a change in the beneficial mutation rate
(*1 � *

0

1
) as well as the typical fitness benefit (B � B

0
). (It may also change the spectrum of deleterious

mutations, which we neglect for the time being; see SI Section 6). The mutator version of this model was
previously analyzed in Ref. (26), as well as a number of related studies (29, 82, 85–94). We reproduce these
calculations below, while generalizing them to allow for changes in the average fitness benefits of mutations
(similar to Ref. 29) as well as a broader range of direct costs and benefits. These classical results will provide
a useful baseline for understanding the impact of larger populations, which we analyze in SI Section 3 below.

In the successive mutations regime, a newly arising modifier lineage will initially compete with the
wildtype population according to the single-locus dynamics

m 5<

mC

= B< 5<(1 � 5<) +

r
5<(1 � 5<)

#

[(C) , (S9)

where [(C) is a Browian noise term (95) and B< is the direct cost or benefit of the modifier. The next selective
sweep will now be generated by a pair of competing Poisson processes with rates

_<(C) = 2#*0

1
B
0
· 5<(C) , (S10a)

_F (C) = 2#*1B · [1 � 5<(C)] , (S10b)

which correspond to the mutant and wildtype lineages, respectively. Since the mutation rate and fitness
benefit both contribute linearly to _8 (C), this process is formally equivalent to the mutator scenario analyzed
in (26), with A = *0

1
B
0
/*1B replacing *0

1
/*1. This allows us to conclude that in absence of a direct cost

(B< = 0), the fixation probability of the modifier scales as

?̃fix (`(B) � `<(B)) ⇡

8>>><
>>>:
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0
/*1B if *

0

1
B
0
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⌧ #*1 · #B,r

2
⇣
*

0

1
B
0

*1B

⌘
#*1 · #B if *

0

1
B
0

*1B
� #*1 · #B,

(S11)

provided that )2 ⌧ # (or #*1 · #B � 1). When #*1 · #B Æ 1, the modifier will either fix or go extinct
neutrally (?fix ⇡ 1/#) before the next sweep occurs. This shows that second-order selection is more efficient
in larger populations, which is reminiscent of our results in Fig. 2. In this case, however, the benefits of
second-order selection are capped by the ratio *0

1
B
0
/*1B, which implies that very large changes in *0

1
or B0

are required to produce an appreciable fixation probability.
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A similar application of Ref. (26) shows that the fixation probability of a modifier with a direct cost
(B< < 0) scales as

?̃fix (`(B) � `<(B), B<) ⇡

Ø
1

|B< |
(B�B< )`< (B)3B

*1B

1 +
|B< |

2#*1B

, (S12)

provided that*0

1
B
0
/*1B ⌧ #*1 · #B. The integral in the numerator implies that modifiers with direct costs

larger than ⇠B
0 will have dramatically reduced fixation probabilities, since future beneficial mutations in

these backgrounds will still be less fit than the current wildtype population. However, since #*1 ⌧ 1, the
fixation probability of the modifier will be significantly reduced by the denominator term well before these
“wasted opportunities” start to become relevant. This illustrates how even small direct costs – much smaller
than a single driver mutation – can overwhelm the evolvability benefits of mutations in the successive sweeps
regime.

The fixation probability of a modifier with a direct benefit (B< > 0) can be computed using a similar
procedure. When B< ⌧ 2#*1B ⌧ B, the next sweep will typically occur before the modifier lineage
establishes, so an analogous version of Eq. (S12) still holds:

?̃fix (`(B) � `<(B), B<) ⇡

*
0

1
B
0

*1B

1 �
B<

2#*1B

, (B< ⌧ 2#*1B ⌧ B) (S13)

For stronger fitness benefits (B< � 2#*1B � 1/#), the modifier will have the opportunity establish and
grow deterministically before the next sweep occurs:

5<(C) ⇡

8>><
>>:

1
2#B<

4
B<C

1+ 1
2#B<

(4B<C�1)
w/ prob 2B1,

0 else.
(S14)

In this regime, the fixation process is similar to the “first-step” clonal interference analysis in Ref. (96).
Provided that B< ⌧ B, the additional fitness benefit of the modifier will have a negligible impact the
establishment probability of the next sweep in either genetic background, so that

_<(C) = 2#*0

1
(B

0
+ B< [1 � 5<(C)] · 5<(C) ⇡ 2#*0

1
B
0
· 5<(C) , (S15a)
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[B � B< 5<(C)] `(B) 3B · [1 � 5<(C)] ⇡ 2#*1B [1 � 5<(C)] . (S15b)

The fixation probability is determined by these competing Poisson processes, so that

?̃fix (`(B) � `<(B), B<) = #
⌧π

1

0
3C_<(C)4

�
Ø
1

0
3C

0
[_< (C

0
)+_F (C

0
) ]

�
,

⇡ 2#*0

1
B
0

π
1

0
3C 4

B<C�2#*1BC�


2#

✓
*
0

1
B
0
�*

1
B

B<

◆
+1

�
·log

h
1+ 1

2#B<

(4
B<C

�1)
i
,

⇡ 2#B<4
�

2#*
1
B

B<
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, (S16)

which will be valid in the limit that 2#*1B ⌧ B< ⌧ B. This result has a simple heuristic interpretation as
the establishment probability of the modifier multiplied by the probability the wildtype population does not
generate a sweep before the modifier fixes on its own (96). Since this fixation probability is independent of
`<(B), it implies that even small direct benefits — much smaller than the size of a typical driver mutation
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— can override the effects of second order selection, even if they reduce the long-term rate of adaptation
to zero. Together with the direct cost results above, these calculations emphasize that natural selection can
be extremely sensitive to the short-term costs or benefits of a mutation in the successive sweeps regime, in
contrast to what we observe in larger populations like Fig. 1A.

3 Evolvability modifiers in the clonal interference regime
In larger populations (#*1 ¶ 1), the assumption of discrete selective sweeps will start to break down.
Multiple beneficial lineages will segregate in the population at the same time, and will interfere with each
other as they compete for dominance in the population (51). In this clonal interference regime, the fate
of a given mutation will sensitively depend on the genetic background that it arises on, and the future
mutations that its descendants produce before they fix or are driven to extinction. This requires a stochastic
generalization of the full multi-locus dynamics in Eqs. (S1) and (S2),

m 5 (Æ6)

mC

=
⇥
- (Æ6) � - (C)

⇤
5 (Æ6)|                    {z                    }

selection

+

’
Æ6
0 " (Æ6

0 � Æ6) 5 (Æ6
0

) �

’
Æ6
" (Æ6 � Æ6

0

) 5 (Æ6)|                                                        {z                                                        }
mutation

+

r
5 (Æ6)

#

[(Æ6, C) � 5 (Æ6)

’
Æ60

r
5 (Æ60)

#

[(Æ6
0
, C) �

’
Æ60

r
5<(Æ6

0)

#

[<(Æ6
0
, C)|                                                                                          {z                                                                                          }

genetic drift

,

(S17a)

and
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(S17b)

where [(Æ6, C) and [<(Æ6, C) are uncorrelated Brownian noise terms (97). While this model is straightforward to
write down, there are no known solutions for arbitrary choices of - (Æ6) and -<(Æ6). Further progress requires
us to make specific assumptions about the shapes of these fitness landscapes, as well as the corresponding
mutation kernels " (Æ6 � Æ6

0
) and "<(Æ6 � Æ6

0
). We introduce one particularly convenient parameterization

in the next section, which is motivated by the concept of macroscopic epistasis explored in previous work
(69, 98).

3.1 Macroscopic epistasis expansion
There are many possible fitness landscapes one could consider. These are often parameterized as a power
series involving different combinations of loci,

- (Æ6) =
!’
✓=1

B✓6✓ +

’
✓<✓

0

n✓ ,✓06✓6✓0 +

’
✓<✓

0
<✓

00

n✓ ,✓0 ,✓006✓6✓06✓00 + . . . (S18)

7



where 6✓ = 1 if there is a mutation at site ✓ and 0 otherwise (84). This representation can be viewed as a Taylor
expansion around a perfectly smooth fitness landscape, where all the {n✓ ,...,✓0} coefficients vanish. Nonzero
values of the n✓ ,...,✓0 coefficients correspond to epistatic interactions between loci; following previous work
(69), we will refer to these interactions as microscopic epistasis, since they can in principle vary across all
possible combinations of sites.

Modifier alleles can be expressed in this framework by designating an arbitrary site as the modifier locus
(e.g. ✓ = <), and recalculating the landscape for 6< = 1 (modifiers) and 6< = 0 (wildtype) separately. This
notation makes it clear that a modifier that changes the fitness effects of other mutations must necessarily
involve some microscopic epistasis, corresponding to terms like n<,✓ , n<,✓ ,✓

0 , and so on.
The space of epistatic fitness landscapes is enormous, and their impact on the evolutionary dynamics of

large populations is not well understood (70). Some studies have attempted to navigate this complexity by
truncating Eq. (S18) after the pairwise terms (99); others have focused on smaller landscapes containing just
a handful of interacting loci (100, 101). In this work, we show that it will be useful to consider an alternative
limit of Eq. (S18), in which the local DFEs defined in Eqs. (S6) and (S7) are approximately constant for
different genotypes:

`(B |Æ6) ⇡ `(B) , `<(B |Æ6) ⇡ `<(B) . (S19)

We can view this approximation as the lowest order term in an alternative expansion of the fitness landscape,

`(B |Æ6) ⇡ `(B) +

’
✓

X`✓ (B) · 6✓ +

’
✓<✓

0

X`✓ ,✓0 (B) · 6✓6✓0 + . . . , (S20)

which works directly in the DFE basis. This genotype dependence of the DFE is sometimes known as
macroscopic epistasis (69), since it aggregates over a large number of microscopic interactions in Eq. (S18).
The approximation in Eq. (S19) can therefore be viewed as the simplest possible model that incorporates
some amount of macroscopic epistasis, with a non-zero X`✓ (B) term at the modifier locus (✓ = <) and all
other X`✓ ,...,✓0 terms vanishing.

We note that such macroscopic epistasis can arise even in the absence of microscopic epistasis (n✓ ,...,✓0 =
0) if the modifier alters the mutation rates at other loci. For example, mutator alleles are often modeled as a
simple change of scale,

"<(Æ6 � Æ6
0
) = A · "<(Æ6 � Æ6

0
) , (S21)

leading to a proportional change in the DFE,

`<(B |Æ6) = A · `(B |Æ6) , (S22)

which has been the starting point for many previous studies (26, 28, 94). In practice, mutator strains are
typically biased toward specific types of mutations, so that the simple proportional model in Eq. (S21)
does not necessarily apply (4, 6, 29). Other mutagenesis mechanisms that target specific genomic regions
(102, 103) lead to conceptually similar complications. Both require us to consider changes in the shape of
the DFE in addition to its overall scale (4, 6, 29).

In addition to mutator alleles, Eq. (S19) can also emerge from epistatic interactions between loci. The
simplest example is a pairwise epistasis model, with nonzero values for the coefficients involving ✓ = <, and
zeros everywhere else. This is sufficient to recover the limit in Eq. (S19), but it is not the only possibility: any
other landscape that gives rise to the same overall distributions in Eq. (S19) will exhibit similar dynamics, even
if the individual fitness effects [B✓ (Æ6) ⌘ - (Æ6 + ✓) � Æ- (Æ6)] are undergoing more complicated rearrangements
under the hood.
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Moreover, our results will not require Eq. (S19) to hold across the entire fitness landscape , but only
within a smaller region that is explored before the modifier either fixes or goes extinct. We determine the size
of this local neighborhood in SI Section 7 and find that it is often modest, corresponding to just a handful
of mutational steps for many empirically relevant parameter values (Fig. 4). We will also show that the
assumption in Eq. (S19) is most sensitive to a narrow range of beneficial fitness effects, so that substantial
deviations in other parts of the DFE can still have a negligible impact on the modifier lineage (SI Section
7). At present, it is difficult to enumerate all of the microscopic landscapes that are consistent with a given
DFE function, `(B |Æ6). However, we can still identify several examples that satisfy Eq. (S19) – at least in the
approximate sense required – that go beyond the mutator allele and pairwise epistasis examples above:

Branching epistatic landscapes. At a formal level, we can consider a “maximally epistatic” landscape of
branching uphill paths of length  , where each step : of a given path can access " ⌧ ! other beneficial
mutations (Extended Data Fig. 2A). If the uphill paths do not contain any loops, the fitness function can be
expressed in the form

- (Æ6) =
 ’
:=1

’
(✓1,...,✓: )2L:

 
:’
9=1

B✓ 9

!  
:÷
9=1

6✓ 9

! ÷
✓8{✓ 9 }:

9=1

(1 � 6✓) , (S23)

where L: denotes the set of all uphill sub-paths of length : , and the B✓ coefficients are independently drawn
from the target DFE `(B). This construction ensures that the DFEs calculated from Eq. (S23) will satisfy
`(B |Æ6) ⇡ `(B) when " is large, even though the landscape contains large amounts of microscopic epistasis.
We can extend this construction to include a modifier allele by writing

- (Æ6) =
 ’
:=1

’
(✓1,...,✓: )2L:

 
:’
9=1

B✓ 9
(1 � 6<) + B

0

✓ 9

6<

!  
:÷
9=1

6✓ 9

! ÷
✓8{✓ 9 }:

9=1

(1 � 6✓) , (S24)

where the B0
✓

coefficients are independently drawn from the modifier DFE `<(B). This microscopic landscape
satisfies the macroscopic epistasis approximation in Eq. (S19), but includes many non-pairwise interactions
by construction.

Non-linear global phenotypes (e.g. stability-activity tradeoffs). The approximation in Eq. (S19) can also
emerge in more concrete settings, when the fitness of the organism is a non-linear function of multiple
global phenotypes. A prototypical example is the stability-activity tradeoff that is often observed in viral
evolution (104, 105) and other protein-binding problems (106), where stabilizing mutations can potentiate
the fitness benefits of mutations that would destabilize the protein on their own. The essential ingredients
of this behavior can be captured in a simple model containing two global phenotypes: (i) activity, denoted
by  (Æ6), which contributes additively to the total fitness, and (ii) stability, denoted by �(Æ6), which has a
Boltzmann-like contribution,

- (Æ6) = � log
⇣
1 + 4

��( Æ6)

⌘
+  (Æ6) + const , (S25a)

We will assume that both phenotypes can be expressed as additive functions of the genotype,

�(Æ6) = q0 +
!’
✓

q✓ · 6✓ ,  (Æ6) =
!’
✓

k✓ · 6✓ , (S25b)
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where q0 denotes the stability of the reference strain. In this model, mutations that only increase the activity
of the protein are always beneficial (B✓ ⇡ k✓). However, mutations that increase activity while also decreasing
stability can be either costly or beneficial depending on the stability of the background that they occur on.

Suppose that there are a large number (") of such mutations with |q✓ | � q0 � 1, which implies that
they will be deleterious on the wildtype background. In this scenario, any mutation that strongly increases
stability will function like an evolvability modifier, by allowing these previously deleterious mutations to
occur. In particular, if the stability enhancement q< is much larger than |q✓ | � q0, then the fitness benefits
of the unleashed mutations will be approximately constant (B✓ ⇡ k✓) until roughly  ⇡ q</(|q✓ | � q0) such
variants have accumulated. If " �  � 1, this example will satisfy the approximation in Eq. (S19), while
relying on the higher-order epistatic interactions in Eq. (S25).

While this particular example was motivated by protein stability, similar behavior can occur for other
combinations of phenotypes, as long as they include the appropriate non-linearities. For example, a simple
model of stabilizing selection involving a one nearly optimized phenotype and another non-optimized one
can be expressed as

- (Æ6) = �|�(Æ6) | +  (Æ6) , (S26a)

where

�(Æ6) =
!’
✓

q✓ · 6✓ ,  (Æ6) =
!’
✓

k✓ · 6✓ . (S26b)

A mutation that increases  (Æ6) while displacing �(Æ6) from its optimal value would enable  ⇡ q</q✓

previously deleterious mutations to accumulate — each providing a fitness benefit B✓ ⇡ q✓ — before the
phenotypic optimum is reattained. If  is sufficiently large, this evolvability modifier would also satisfy the
approximation in Eq. (S19), while involving a distinct form of non-pairwise epistasis.

Chromosomal duplications / aneuploidy. The approximation in Eq. (S19) can also apply to scenarios that
are difficult to capture with a traditional fitness landscape, because they involve changes to the structure of the
genome itself. Classical examples include chromosomal duplications and other copy-number changes, which
are frequently observed in cancer evolution (14, 107) and laboratory evolution experiments in eukaryotes
(108). These copy number variants involve changes in ploidy — in addition to changes in target size — so
that dominance effects start to become important. For example, a whole-genome duplication of a haploid
genome would lead to a modified DFE of the form

`<(B) =
!’
✓=1

2`✓ · X(B � B✓⌘✓) , (S27)

where ⌘✓ denotes the dominance coefficient of the mutation at site ✓. The successive sweeps picture in SI
Section 2 predicts that the fixation probability of this copy-number variant is / 2B⌘/B, which is neutral in
purely semi-dominant case (B⌘ = B/2 =) ?̃fix = 1) and only moderately beneficial for complete dominance
(B⌘ = B/2 =) ?̃fix ⇡ 2). In contrast, our results below suggest that in larger populations, these variants
can be both strongly favored or disfavored by second-order selection depending on the joint distribution of
(B✓ , ⌘✓).

Together, these examples illustrate that the limiting behavior in Eq. (S19) — while still capturing just a subset
of all possible fitness landscapes — can nevertheless approximate many biologically relevant scenarios where
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second-order selection is thought to play an important role. We will therefore use this model as a starting
point for all of our mathematical derivations below. We will revisit this assumption in SI Section 7, where
we discuss extensions to other possible fitness landscapes.

3.2 Fitness wave formalism
An advantage of the model in Eq. (S19) is that it allows us to exploit existing “fitness wave” methods for
modeling clonal interference (26, 42, 43, 50, 51, 75, 109–112). This previous literature has shown that
the multi-locus dynamics in Eq. (S17) can often simplified by considering a coarse-grained picture, which
groups together individuals with the same overall fitness:

5 (- , C) =
’
Æ6

5 (Æ6, C) · X(- � - (Æ6)) . (S28)

We can extend this idea to our present context, defining a corresponding fitness distribution for the modifier
lineage as well:

5<(- , C) =
’
Æ6

5<(Æ6, C)X(- � -<(Æ6)) . (S29)

In the special case that `(B |Æ6) = `(B) and `<(B |Æ6) = `<(B) for all genotypes Æ6, Eq. (S17) can be written in
the coarse-grained form,

m 5 (-)

mC

=
⇥
- � - (C)

⇤
5 (-)|                {z                }

selection

+

π
3B `(B) [ 5 (- � B) � 5 (-)]|                          {z                          }

mutation

+

π
3-

0
[X(- � -

0
) � 5 (-)]

r
5 (- 0)

#

[(-
0
) � 5 (-)

π
3-

0

r
5<(-

0)

#

[<(-
0
)

|                                                                                                   {z                                                                                                   }
genetic drift

,

(S30a)

m 5<(-)

mC

=
⇥
- � - (C)

⇤
5<(-)|                 {z                 }

selection

+

π
3B `<(B) [ 5<(- � B) � 5<(-)]|                               {z                               }

mutation

+

π
3-

0
[X(- � -

0
) � 5<(-)]

r
5<(-

0)

#

[<(-
0
) � 5<(-)

π
3-

0

r
5 (- 0)

#

[(-
0
)

|                                                                                                       {z                                                                                                       }
genetic drift

,

(S30b)

where - (C) =
Ø
- 5 (- , C)3- +

Ø
- 5<(- , C)3- is the mean fitness of the population, and the [8 (-) are

uncorrelated Brownian noise terms (97). This allows us to generalize the notion of a mutator allele to handle
more general differences in evolvability, while still bypassing the enormous complexity of the underlying
fitness landscape.

In the absence of the modifier ( 5< = 0), the wildtype distribution 5 (- , C) approaches a traveling wave
form that increases in fitness at an average rate hmC- (C)i ⌘ E(`(B), #) (42, 51). Previous work has shown
that the typical profile 5 (G) is well-approximated by the deterministic equation,

�EmG 5 (G) = G · 5 (G) +
π

`(B) [ 5 (G � B) � 5 (G)] 3B , (S31)
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which is the expected value of Eq. (S30a) when - (C) ⇡ EC (42, 43).
We assume that the modifier mutation will arise in this steady-state population, on a genetic background

drawn from 5 (G). Its descendants will found a second fitness wave, 5<(- , C), which competes with the
wildtype population 5 (- , C) as they continue to acquire additional mutations according to the dynamics in
Eq. (S17) (Fig. 1).

Branching process approximation. The key approximation we will make in this work is that the fate of the
modifier will often be determined while it is still at a low frequency in the population. Previous studies have
shown that this is a good approximation for first-order mutations – including both neutral and deleterious
mutations – in the clonal interference regime (42, 43, 47, 50, 112, 113). In this work, we use a combination
of self-consistency arguments and comparisons with simulations to show that this same approximation holds
for a broad range of modifier alleles as well. The main exceptions will occur for modifiers that dramatically
reduce evolvability (e.g. the dead-end modifiers in Fig. 3D); we treat this case separately in SI Section 4.1.6.

When the frequency of the modifier is small, the mean fitness of the population can be approximated
by the wildtype value - (C) ⇡ EC, and the higher-order contributions in the drift term in Eq. (S30b) can be
neglected. The dynamics of the modifier then reduce to the multitype linear branching process,

5<(-)

mC

= [- � EC] 5<(-) +

π
3B `<(B) [ 5<(- � B) � 5<(-)] +

r
5<(-)

#

[<(-) , (S32)

with the initial condition 5<(- , 0) = 1
#
X(- � G � B<). The long-term non-extinction probability of this

process, defined by

F<(G) ⌘ F(G |`(B) � `<(B)) ⌘ lim
C!1

D
1 � 4

�
Ø
5< (-,C )3G

E
, (S33)

can be calculated using the formal procedures described in Ref. (50). This yields the standard branching
process recursion listed in Eq. (1) in the main text:

0 = G · F(G |`(B) � `<(B))|                        {z                        }
selection

+

π
`<(B) [F(G + B |`(B) � `<(B)) � F(G |`(B) � `<(B))]|                                                                    {z                                                                    }

mutation

3B

� E(`(B), #) · mGF(G |`(B) � `<(B))|                                        {z                                        }
competition with wildtype

�
1

2
· F(G |`(B) � `<(B))

2

|                          {z                          }
genetic drift while rare

,

(S34)

which is a straightforward generalization of the mutator version in Ref. (26). If the fate of the modifier
is determined while it is rare, then this non-extinction probability must also coincide with the long-term
probability of fixation. This implies that the overall fixation probability of the modifier can be obtained from
Eq. (S34) by averaging over the random genetic background,

?fix(`(B) � `<(B), B<) =
π

5 (G) · F(G + B< |`(B) � `<(B))3G , (S35)

which is equivalent to Eq. (2) in the main text. In the limit that `<(B) ! `(B), Eq. (S35) reduces to the
fixation probability of a first-order mutation which has been studied in previous work (42, 43, 50, 112).
In particular, this previous work has shown that a self-consistency condition can be obtained from the fact
that the overall fixation probability of a neutral mutation must always be equal to 1/# (this follows directly
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from the normalizability of the full dynamics in Eq. S30). Combining this fact with Eq. (S35) yields the
self-consistency condition,

?fix(`(B) � `(B), 0) =
π

5 (G) · F(G |`(B) � `(B))3G =
1

#

. (S36)

Together with Eqs. (S31) and (S34), this completely determines the wildtype rate of adaptation E(`(B), #)
as a function of `(B) and # (42, 43, 50, 112).

When `<(B) < `(B), the conditional fixation probability in Eq. (S34) will differ from that of a first-order
mutation because there are different mutation spectra in the mean fitness and mutation terms. This is because
the modifier lineage primarily competes against the wildtype population [whose mean fitness is controlled
by `(B)], but acquires additional mutations from its own distribution, `<(B). We note, however, that since
the competition with the wildtype population is completely mediated by E(`(B), #) (a monotonic function
of #), the conditional fixation probability of the modifier lineage can always be mapped to the conditional
fixation probability of a first-order mutation in a population that is fixed for the modifier allele, but with a
different population size #⇤. In other words,

F(G |`(B) ! `<(B), #) = F(G |`<(B) ! `<(B), #
⇤
) , (S37)

where #⇤ is defined by

E(`<(B), #
⇤
) = E(`(B), #) . (S38)

This implies that the space of solutions for F(G |`(B) ! `<(B)) will have the same general form as the “first-
order” F(G) function that has been studied in previous work (42, 43, 50, 111, 112). It also implies that the
dynamics of non-extinction in Eq. (S32), which were previously described in Ref. (43), will be qualitatively
similar as well. However, we will see below that actually using this result for evolvability modifiers will
often require solutions to Eq. (S34) that go beyond the parameter regimes that have been examined in these
earlier studies. We have therefore developed a new approach for deriving approximate analytical solutions
for F(G |`(B) � `<(B)) that will apply across this broader range of parameters. We outline the general
approach in SI Section 3.3 below, and apply it to different classes of distributions of fitness effects in SI
Sections 4 and 5.

For notational convenience, we will suppress the explicit dependence on `(B) and `<(B) in the following
sections, writing F(G) ⌘ F(G |`(B) � `(B)) for the conditional fixation probability of a first-order mutation
and F< ⌘ F(G |`(B) � `<(B)) for the conditional fixation probability of the modifier lineage. We will also
let E ⌘ E(`(B), #) denote the rate of adaptation in the wildtype population and E< ⌘ E(`<(B), #) denote
the long-term rate of adaptation that is achieved if the modifier takes over.

3.3 Asymptotic solution in the “sharp shoulder” regime
There are many parameter regimes of clonal interference that one can consider (43, 112). Here, we will
primarily focus on a regime that is relevant for a broad range of naturally and experimentally evolving
populations, which roughly corresponds to the case where the fitness benefits of a typical “driver mutation”
(B1) are much larger than the total rate at which they occur (*1) (43, 50). We will define these conditions
more precisely below.
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Relative fitness distribution. Previous work has shown that in our regime of interest, the solution to
Eq. (S31) can be approximated by a truncated Gaussian distribution,

5 (G) ⇡

(
1

p
2cE

4
�

G
2

2E G  G2 ,

0 G > G2 ,

(S39)

where G2 denotes the location of the fittest individuals that are likely to exist within the population (42, 43, 50).
This solution is valid when G2� B1 �

p
E and B1 �

p
E, which constitutes the formal definition of the regime

that we consider in this work. The first condition (G2 � B1 �
p
E) implies that the parents of the most fit

individuals are substantially more fit than the majority of the population (i.e. clonal interference is common).
The second condition (B1 �

p
E) implies that the majority of the population is concentrated near the mean

fitness. This is also known as the “moderate speeds” regime (43), since the second condition can be rewritten
as E ⌧ B

2
1
. We will assume that these conditions hold for the wildtype population in which the modifier

arises.

Lineage fixation probability. Previous work (42, 50) has shown that in our parameter regime of interest,
the solutions to Eq. (S34) can be decomposed into a high-fitness region, where the mutation term is sub-
dominant:

0 ⇡ G · F<(G)|     {z     }
selection

� E · mGF<(G)|         {z         }
competition w/ wt

�
1

2
· F<(G)

2

|       {z       }
genetic drift

,

(S40)

and a linearized region, where the mutation term is important but the drift term can be neglected:

0 ⇡ G · F<(G)|     {z     }
selection

+

π
3B `<(B) [F<(G + B) � F<(G)]|                               {z                               }

mutation

� E · mGF<(G)|         {z         }
competition w/ wt

. (S41)

There is also a narrow region in the middle where both approximations are valid, so that asymptotic matching
can be used to obtain a full global solution. This asymptotic decomposition will continue to be valid for our
modifier case as well.

In the high fitness region, the solution to Eq. (S40) is given by the shoulder solution,

F<(G) ⇡
2G2<4(G

2
�G

2
2<)/2E

1 + (G2</G) 4
(G2�G22<)/2E

, (S42)

where G2< is a constant of integration that will be determined self-consistently below. When G2< �
p
E,

this shoulder solution develops a narrow boundary layer around G = G2< ± O(E/G2<), such that the fixation
probability can be well-approximated by the piecewise form,

F<(G) ⇡

(
2G if G � G2< ¶ O(E/G2<),

2G2<4
G
2
�G

2
2<

2E if G2< � G Æ O(E/G2<).
(S43)

This piecewise function has a simple interpretation in terms of the dominant balances in Eq. (S40) (42). The
linear scaling above G2< emerges from a balance between the selection and genetic drift terms; this implies
that lineages with G ¶ G2< will fix provided that they survive genetic drift. Conversely, the exponential
scaling at lower G emerges from a balance between the selection and mean fitness terms; this implies that
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lineages with G Æ G2< are strongly influenced by competition with the surrounding population (i.e. clonal
interference). In the special case where `<(B) = `(B), previous work has shown that G2< approximately
coincides with the nose of the fitness distribution in Eq. (S39) (42, 43, 50). This makes some intuitive sense:
lineages with relative fitness ¶ G2 do not experience clonal interference, and will fix if they survive genetic
drift; this suggests that the steady-state fitness distribution should not contain such individuals, since they
should already have fixed. We will therefore also refer to G2 as the interference threshold for the wildtype
population. We will therefore also refer to G2 as the interference threshold for the wildtype population. When
`<(B) < `(B) the interference threshold of the modifier (G2<) will generally differ from the location of the
nose (G2) — this will be critically important for our analysis in SI Sections 4 and 5 below.

The mutation terms must eventually become important for smaller values of G, since the shoulder solution
in Eq. (S43) starts to increase for G < 0. To avoid this unphysical behavior, and ensure F<(G) decreases as
G ! 1, the shoulder solution must eventually map on to the correct branch of the solution to Eq. (S34).
Previous work has used saddle point methods to identify the relevant solutions to Eq. (S41) (43, 112), while
other studies have utilized thresholding approximations that set F<(G) ⇡ 0 below a critical fitness value
(42, 50). Here we take a slightly different approach, by recasting Eq. (S34) as an integral equation.

Multiplying both sides of Eq. (S34) by 4
� (G�*0 )

2

2E and integrating from �1 to G, we can rewrite Eq. (S34)
in the recursive form,

F<(G) = 4
(G�*0 )

2

2E

π
1

0
3B

π
G+B

�1

`<(B)

E

· 4
� (H�B�*0 )

2

2E F<(H) 3H

� 4
(G�*0 )

2

2E

π
G

�1

4

� (H�*0 )
2

2E ·
F<(H)

2

2E
3H ,

(S44)

where *0 ⌘
Ø
`<(B) 3B is the total mutation rate. Since F<(G) rapidly declines below the interference

threshold, the contributions from the second term will become negligible when G Æ G2< � O(E/G2<), and
Eq. (S44) will reduce to the simpler form

F<(G) = 4
(G�*0 )

2

2E

π
1

0
3B

π
G+B

�1

`<(B)

E

· 4
� (H�B�*0 )

2

2E · F<(H) 3H . (S45)

This recursive formula has a simple intuitive interpretation illustrated by the schematic in Fig. 1. A modifier
lineage founded at a relative fitness G < G2< will start as a single clone, whose average size will evolve as

h=(C)i = exp


GC �

EC
2

2
�*0C

�
. (S46)

These growth dynamics account for the steady increase in the wildtype mean fitness, as well as the outflow of
individuals that acquire further mutations as the clone is growing. The total production rate of new mutations
is h=(C)i · `(B)3B, and each of these events will found a new modifier lineage with relative fitness G + B � EC;
the original lineage will fix if one of these descendant lineages is ultimately successful, yielding the recursive
formula,

F<(G) =
π

1

0
3C

π
1

0
3B `<(B) · 4

GC�
EC

2

2 �*0C · F<(G + B � EC) . (S47)

The linearity of this expression implies that successful clones are highly unlikely to give rise to multiple
successful mutants, which is consistent with the assumption that clonal interference is very strong (F<(G) ⌧
2G) when G < G2<. Equation (S45) can be recovered from Eq. (S47) by changing variables from C to
H ⌘ G � E · C + B, which represents the time-dependent landing fitness of the clone’s mutant offspring.
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Note that while the recursion in Eq. (S45) is also a solution to the linearized version of Eq. (S34), our
present derivation shows that the interpretation is slightly different here. In particular, since the upper limit
of the H-integral in Eq. (S45) is larger than G, the mutation term can in principle depend on the behavior
of F<(G) for G > G2<, where the effects of the nonlinear F<(G)2 term start to become important. We can
account for this non-locality using the shoulder solution in Eq. (S43), by rewriting Eq. (S45) as a piecewise
integral,

F<(G) = 4
(G�*0 )

2

2E

π
1

0
3B

π
G+B

�1

`<(B)

E

· 4
� (H�B�*0 )

2

2E ·

2666664
2G2<4

H
2
�G

2
2<

2E \ (H � Gmin)

1 +
G2<

H
4

H
2�G2

2<

2E

+ F<(H)\ (Gmin � H)

3777775
3H ,

(S48)

where \ (·) is the unit step function, and Gmin represents the point a which the shoulder solution starts to break
down. When Gmin Æ G2< �O(E/G2<), we can use this expression to determine G2<, by noting that Eq. (S48)
must also match the shoulder solution in Eq. (S43) in the overlap region where both approximations are valid
[Gmin Æ G Æ G2 � O(G2)].

While this integral formulation is similar to the transform methods (43, 112) that have previously
been used to analyze F<(G), it offers practical advantages that will become important for our analysis of
modifier mutations below. In particular, we will see that in our parameter regime of interest, we can use
Eq. (S48) to analytically extend the shoulder solution to progressively lower fitness values. These analytical
approximations will be critically important for treating modifier mutations with large direct costs (Fig. 3).

In the following sections, we use this framework to derive explicit solutions forF<(G) different choices of
`<(B). We begin by considering a simple model, where the driver mutations all share the same characteristic
fitness benefit (SI Section 4). This will allow us to verify the self-consistency conditions assumed above, and
to obtain explicit predictions for the overall fixation probabilities of different modifier mutations. We then
extend these calculations to continuous distributions of fitness effects in SI Section 5, and show that more
general distributions can often be understood using the simple model in SI Section 4.

4 Solution for a simple model of the distribution of fitness e�ects
To make analytical progress, we first consider a simple scenario in which the wildtype population produces
mutations with a single fitness benefit B1 at a total rate *1. The distribution of fitness effects can then be
written as a point mass,

`(B) = *1 · X(B � B1) , (S49)

where X(I) is the Dirac delta function. Previous work has shown that in our parameter regime of interest,
the rate of adaptation (E) and interference threshold (G2) follow the approximate scaling,

E ⇡
2B2
1
log(#B1)

log2(B1/*1)
, G2 ⇡

2B1 log(#B1)

log(B1/*1)
, (S50)

which are valid in the limit that G2 � B1 (42, 43, 51). In terms of these parameters, the conditions we
assumed for our solution in SI Section 3.3 (G2 �

p
E and B1 �

p
E) become

1 ⌧ log(#B1) ⌧ log2(B1/*1) , (S51)

which require that #B1 � 1 and B1 � *1.
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For distributions of fitness effects in the same class as Eq. (S49), the most general evolvability modifier
is one that produces mutations with a different benefit B0

1
and different rate*0

1
, so that

`<(B) = *0

1
· X(B � B

0

1
) . (S52)

In the analysis below, we will assume that *0

1
and B

0

1
are chosen such that *0

1
⌧ B

0

1
, G2< �

p
E, and

B
0

1
�

p
E. In this regime, the outflow of mutations can be neglected in Eq. (S48). We will also assume that

the fold change in the mutation rate may be large [log(*0

1
/*1) � 1], but the fold change in the selection

strength will always be comparatively modest [log(B0
1
/B1) Æ log(10)]. This will be sufficient to derive all

of the results in the main text.
Substituting Eq. (S52) into Eq. (S48) yields an integral relation for F<(G),

F<(G) = 2G2<4
G
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where we have neglected the outflow due to new mutations since *0

1
⌧ B

0

1
Æ G. The interference threshold

is determined by matching Eq. (S53) to the shoulder solution when G Æ G2< � O(E/G2<), which yields a
related integral,
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The integrals in Eqs. (S53) and (S54) will sensitively depend on the relative values of G2< and B0
1
. When

G2< � B
0

1
�

p
E, the integrand in Eq. (S54) will be maximized for relative fitnesses near G2<. We will

refer to this limit as the multiple mutations regime, since it implies that successful lineages must always
possess anomalously high relative fitnesses (G2< � B

0

1
�

p
E). In the opposite extreme (B0

1
� G2< �

p
E),

the integrand in Eq. (S54) will be maximized for relative fitnesses near B0
1
, where the shoulder solution has

already transitioned to the Haldane limit [F(G) ⇡ 2G]. We will refer to this limit as the quasi-sweep regime,
since it implies that lineages will be guaranteed to fix if they produce a single mutation that survives genetic
drift. Our assumptions imply that the wildtype population will always fall in the multiple mutations regime,
but the modifier lineage may differ depending on the relative values of (*0

1
, B

0

1
) and (*1, B1). We consider

each case separately below.

4.1 Multiple mutations regime
4.1.1 Location of the interference threshold

When G2<� B
0

1
�

p
E, the integral in Eq. (S53) will be dominated by fitnesses close to G2<. In particular, the

contributions from G < G2< will be dominated by fitnesses within O(E/B
0

1
) of G2<, while the contributions

from G > G2< will be dominated by fitness within O(E/(G2< � B
0

1
)) of G2<. The dominant contribution will

therefore depend on the relative magnitudes of B0
1

and G2< � B
0

1
. When G2< � B

0

1
� B

0

1
�

p
E, the dominant

contribution will come from the exponential region of Eq. (S43), so that the auxilliary condition becomes
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Note that this derivation implicitly assumes that the shoulder solution extends at least O(E/B
0

1
) below G2<;

we will validate this assumption below. In the opposite case where B0
1
� G2< � B

0

1
�

p
E, the dominant

contribution to the integral in Eq. (S54) will come from the linear region of Eq. (S43), so that the auxilliary
condition becomes

1 ⇡
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1

G2< � B0
1

◆
exp

"
G2<B

0

1

E

�
B
02
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#
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For convenience, we will summarize these two equations with the common expression,
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◆
, (S57)

which reduces to the correct scaling in the corresponding limits. Since we have assumed that the wildtype
population always lies in the multiple mutations regime (G2 � B1 �

p
E), the background interference

threshold must satisfy an analogous condition,

1 ⇡
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B1

◆
exp

"
G2B1

E

�
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2
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2E

# ✓
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◆
, (S58)

which matches the expression derived in Ref. (50). These expressions allow us to solve for G2< and G2 as a
function of (*0

1
, B

0

1
), (*1, B1), and E. In particular, by dividing Eq. (S57) by Eq. (S58), we can solve for G2<

as a function of the fold changes in*1 and B1:

G2< ⇡
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B
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where we have neglected logarithmic corrections in G2</G2 and B0
1
/B1. This shows that the G2< � B

0

1
�

p
E

assumption will be valid provided that

B
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Æ

s
2G2 � B1
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2
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1

*1

◆
. (S60)

In particular, Eq. (S60) shows that the multiple mutations regime will apply for pure mutation rate modifiers
as large as log(*0

1
/*1) Æ (G2 � B1)B1/E, while pure selection strength modifiers require the more stringent

condition, B0
1
/B1 Æ

p
(2G2 � B1)/B1. Violations of these conditions are considered in SI Section 4.2 below.

4.1.2 Extending the shoulder solution to lower fitness values

With the location of G2< fixed by Eq. (S57), we will now use the integral recursion in Eq. (S53) to extend the
shoulder solution for F<(G) to progressively lower fitness values. When G + B0

1
¶ G2< + O(E/(G2< � B

0

1
)),

the dominant contribution to Eq. (S54) will also be contained within the region of integration in Eq. (S53).
We can therefore substitute Eq. (S54) to obtain

F<(G) ⇡ 2G2<4
G
2
�G

2
2<

2E . (S61)

This derivation makes it clear that the shoulder solution will continue to be valid for fitnesses as low as

Gmin(`<(B)) ⌘ G2< � B
0

1
, (S62)
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which will serve as our definition of Gmin in Eqs. (S54) and (S53) above. This validates our assumption that
the mutation term in Eq. (S34) is negligible for G ¶ Gmin + O(E/(G2< � B

0

1
)). Moreover, since G2< � Gmin =

B
0

1
� E/B

0

1
, it also validates our assumption that the location of G2< in Eq. (S57) is completely determined

by regions where the shoulder solution is valid (G > Gmin). For fitnesses below Gmin, the finite upper limit in
Eq. (S53) will start to become important. However, as long as G + B0

1
¶ Gmin + O(E/B

0

1
), the integral will

continue to be dominated by regions where the shoulder solution is valid. When G Æ Gmin � O(E/G2<), the
upper limit of integration will fall within the exponential region of the shoulder solution, yielding

F<(G) ⇡ 2G2<4
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After dividing this expression by the auxiliary condition for G2< in Eq. (S57), we obtain

F<(G) ⇡ 2G2<4
G
2
�G

2
2<

2E ·

✓
G2< � B

0

1

G2<

◆
4
�
(G2<�B

0

1
�G)B0

1

E , (S64)

which will be valid for relative fitnesses in the range

G2< � B
0

1
� O(E/G2<) ¶ G ¶ G2< � 2B0

1
+ O(E/B

0

1
) . (S65)

By comparing Eq. (S61) and Eq. (S64), we can see that F<(G) declines by a factor of ⇠4B021 /E across this
region. Since we have assumed that B0

1
�

p
E, this provides a natural justification for the thresholding

approximation employed in Ref. (50), which assumed that F(G) was negligible for fitnesses below Gmin.
Equation (S64) constitutes a more quantitative version of this approximation, which will be useful for the
analysis below.

We can continue these calculations to recursively extend F<(G) to progressively lower fitness values.
When G Æ G2< � 2B0

1
+ O(E/G2<), the shoulder solution will not contribute at all to Eq. (S53), but the region

in Eq. (S64) will dominate, yielding
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for G ¶ G2< � 3B0
1
+ O(E/B

0

1
). More generally, for relative fitnesses in the range
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0

1
� O(E/B

0

1
) ¶ G ¶ G2< � (= + 1)B0

1
+ O(E/B

0

1
) , (S67)

one can continue this argument to show that

F<(G) ⇡ 2G2<4
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This shows that each additional “step” reduces the original shoulder solution by factor of ⇠4=(=�1)B021 /2E
� 1.

For fitness values that are many multiples of B0
1

below G2<, we can substitute = ⇡ (G2< � G)/B
0

1
to show that

the leading order contribution to F<(G) scales as

logF<(G) ⇠ const �
(G2< � G) (G2< � B

0

1
/2)

E

, (S69)

which obeys the required boundary condition that F<(G) ! 0 as G ! �1. Thus, Eq. (S68) provides an
asymptotic solution for F<(G) that is valid across the full range of relative fitnesses below G2<.
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4.1.3 First-order mutations and the rate of adaptation

When `<(B) ! `(B), our solution for F<(G) can be used to derive the fixation probabilities of first-order
mutations, which have been studied in previous work (42, 43, 50). We reproduce these results here for
completeness, using the new expressions for F(G) that we have derived above. This will allow us to make
comparisons to the second-order selection pressures analyzed in SI Section 4.1.4 below. (Readers who are
familiar with this material may skip directly to SI Section 4.1.4.)

For a completely neutral mutation (B< = 0), we can substitute our solution for 5 (G) in Eq. (S39) into the
self-consistency condition in Eq. (S36) to rewrite it in the convenient form:

1

#

=
π

5 (G)F(G) 3G =
2G24�

G
2
2

2E
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2cE

π
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2

2E

3G , (S70)

which depends on the ratio between the true value of F(G) and the exponential shoulder solution in Eq. (S43).
Substituting our solution for F(G) in Eq. (S68) then yields
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G
2
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where we have only included the = = 0 and = = 1 regions from Eq. (S68); all of the other terms are smaller
by additional factors of exp

�
=(= � 1)B2

1
/2E

�
, and will therefore provide a negligible contribution when

B1 �
p
E. Note that the first term in Eq. (S71) contributes equally over the whole range of G 2 (G2 � B1, B1),

while the second term is dominated by fitnesses within O(E/B1) of G2 � B1. Since B1 � E/B1, the first term
dominates, yielding

1 ⇡
2#G2B1
p

2cE
4
�

G
2
2

2E , (S72)

which matches the condition previously derived in Ref. (50). When combined with the auxiliary condition
for G2 in Eq. (S58), this allows us to solve for E and G2 as a function of the underlying parameters # , B1,
and *1. An iterative solution of Eqs. (S72) and (S58) assuming that G2 � B1 �

p
E yields the asymptotic

expressions for E and G2 in Eq. (S50). The fixation probabilities of non-neutral mutations can be calculated
using a similar procedure. We first use the self-consistency condition in Eq. (S72) to rewrite the scaled
fixation probability in a similar form as Eq. (S70),

?̃fix(B) =
π
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. (S73)

This differs from the previous integral in Eq. (S70) by the presence of the exponential factor 4GB/E and the
shifting of the upper limit of integration from G2 to G2 + B. The behavior of this integral will therefore depend
on the sign of B.

Beneficial mutations. When B > 0, the 4GB/E term will enhance the contributions from higher fitness
values, so the = � 1 terms in Eq. (S68) will continue to be negligible. Moreover, since the upper limit
of integration is now larger than G2, there will also be a new contribution from the Haldane region of the
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shoulder solution, so that
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where�(I) ⌘
1

p
2c

Ø
I

�1
4
�D

2
/2
3D is the Gaussian cumulative distribution function. The leading order scaling

is given by

log ?̃fix(B) ⇡

(
G2B

E
if 0 < B ⌧ G2,

log(2#B) if B � G2,
(S75)

which transitions between a regime of strong clonal interference for B ⌧ G2 and the Haldane limit when
B � G2 (42).

The fixation probabilities in Eq. (S75) have a simple heuristic interpretation. To be a successful, a
moderately beneficial mutation (B ⌧ G2) will typically arise on a background near G = G2 � B. This mutation
will found a new lineage which experiences the effects of clonal interference and must generate multiple
more fit descendants to take over and fix. Over this fixation time, )BF = G2/E, the beneficial mutation will
provide an exponential advantage to its founding lineage. On the other hand, successful mutations that are
extremely beneficial (B � G2) will typically land above the interference threshold (G > G2 � B) and fix if they
survive genetic drift.

Deleterious mutations. The fixation probabilities of deleterious mutations (B < 0) can be calculated using
a similar procedure. In this case, however, the 4�G |B |/E term becomes increasingly large at lower fitness
values, and will need to be cut off by one of the = � 1 terms in Eq. (S68). To build intuition, let us first
consider the case where |B | < B1, so that
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The contribution from the = = 0 term is now peaked at its lower limit of integration (G ⇡ G2 � B1). However,
when |B | is smaller than B1, the contribution from the = = 1 term is still peaked at its upper limit of
integration (G ⇡ G2 � B1), which implies that the total contribution to the fixation probability will also be
peaked at G ⇡ G2 � B1. [The contributions from the = � 2 terms will be smaller by additional factors of
exp(=(=�1)B2

1
/2E), and will therefore be negligible in the limit that B1 �

p
E.] Evaluating the two integrals

then yields
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which is valid for fitness costs B 2 (�B1 + O(E/B1), 0). When |B | ⌧ B1, this matches the fixation probability
derived using the thresholding approximation in Ref. (50), but it starts to deviate from Ref. (50) for |B | ⇠

O(B1). We expect that the expression in Eq. (S77) will be more accurate in this case, since it better captures
the behavior of F(G) below G ⇡ G2 � B1.

The fixation probabilities of more strongly deleterious mutations can be calculated in a similar manner.
In this case, it will be convenient to write

|B | = :B1 + � , (S78)
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where : is the largest integer such that � > 0. The upper limit of integration at G2 � B ⌘ G2 � :B1 �� implies
that the first term with nonzero contribution to ?fix will be the = = : term, so that

?̃fix(B) ⇡
4
�

B
2

2E

:!

✓
1 �

B1

G2

◆
:

4
�

: (:�1)B2
1

2E

π
G2�:B1��

G2� (:+1)B1

4
�

G (:B
1
+�)

E
�

:B
1
(G2�:B1�G)

E

3G

B1

+
4
�

:B
2
1

E

: + 1

✓
G2 � B1

G2

◆ π
G2� (:+1)B1

G2� (:+2)B1

4
�

G (:B
1
+�)

E
�

(:+1)B
1
(G2� (:+1)B

1
�G)

E

3G

B1

+ . . .

377775
.

(S79)

As above, the contribution from the = = : term is peaked at the lower limit of integration (G ⇡ G2� (: +1)B1),
while the contribution from the = = : +1 term is peaked at its upper limit (G ⇡ G2� (: +1)B1). The terms with
= � : + 2 are smaller by exponential factors of O(B

2
1
/E), and will therefore provide a negligible contribution

to the fixation probability when B1 �
p
E. Evaluating the two integrals then yields,
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whose leading order behavior simplifies to

log ?̃fix(B) ⇡
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(S81)

For the purposes of numerical evaluation, it is useful to employ a modified version of Eq. (S80),
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(S82)

which has the same asymptotic limit when E ⌧ B
2
1
, but enforces strict continuity at � = B1.

4.1.4 Modifiers without direct costs or benefits

We now are in a position to calculate the fixation probabilities of modifier mutations (`<(B) < `(B)). In the
absence of a direct cost or benefit (B< = 0), this will only be a slight generalization of the neutral fixation
probability calculation in SI Section 4.1.3. In the case of a modifier mutation, Eq. (S70) becomes

?̃fix((*1, B1) ! (*
0

1
, B

0

1
)) =

π
# 5 (G)F<(G) ⇡

G2<B
0

1

G2B1

4

G
2
2
�G

2
2<

2E

π
G2

�1

F<(G)

2G2<4
G
2�G2

2<

2E

3G

B
0

1

, (S83)
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where the primary difference is the presence of the prefactor term, and the fact that the upper limit of
integration is now equal to G2 < G2<. The behavior of this integral will sensitively depend on the relative
magnitudes of G2< and G2.

Positively selected modifiers. If the modifier interference threshold is less than that of the wildtype (G2< <

G2), then the integral in Eq. (S83) will contain both the = � 0 terms as well as a portion of the Haldane
region,
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The second term is negligible in our regime of interest where G2<B0
1
/E � 1, so the fixation probability

reduces to
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Since G2< < G2, Eq. (S85) implies that ?̃fix > 1 (i.e., the modifier is favored by natural selection).

Negatively selected modifiers. In the opposite case, where the interference threshold of the modifier is
greater than that of the wildtype (G2< > G2), the upper limit of the integral in Eq. (S83) will occur
somewhere in the interference region of F<(G). The precise behavior will depend on how far G2 extends
into this region. If G2 > G2< � B

0

1
+ O(E/B

0

1
), then the dominant contribution will still come from the = = 0

region of Eq. (S68), so that
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Since G2< > G2, this implies that ?fix/?0 < 1 (i.e., the modifier is disfavored by natural selection). More
generally, if

G2 = G2< � :B
0

1
� � , (S87)

for some � 2 (0, B0
1
), then the primary contribution will come from the = = : region of Eq. (S68). This

yields
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Predictions for specific values of B
0

1
and*

0

1
. We can express the fixation probability of a modifier in terms

of the underlying parameters, B0
1
,*0

1
, and # by substituting Eq. (S59) into Eq. (S85) to obtain,

log ?̃fix((*1, B1) � (*
0

1
, B

0

1
)) ⇡

 
1 �

B
2
1

B
02
1

! ✓
G
2
2

2E
�
G2B1

2E

◆
+
G2

B1

B
2
1

B
02
1

log
✓
*

0

1

*1

◆
�

E

2B02
1

log2
✓
*

0

1

*1

◆

+
1

2

 
1 �

B
2
1

B
02
1

!
log

✓
*

0

1

*1

◆
,

(S89)

where we have assumed that G2< � B
0

1
�

p
E. In the case of a selection strength modifier (*0

1
= *1), the

leading order contributions simplify to
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where we have substituted G2
2
/2E ⇡ log (#B1) and G2B1/E ⇡ log (B1/*1) on the right hand side.

The fixation probability of a selection strength modifier has a simple heuristic explanation. For small
changes in the selection coefficient (B0

1
� B1 ⌧ B

0

1
), successful mutations arise in the high-fitness “nose” of

5 (G) (G ⇡ G2 � B1) and must acquire ⇠G2/B1 additional mutations before they reach O(1) frequencies. In
each of these steps, a selection-strength modifier produces ⇠ exp

⇥
B1

E
· 9 (B

0

1
� B1)

⇤
more mutations than a

wildtype individual with the same fitness, leading to the exponential scaling observed in Eq. (3).
Similarly, the fixation probability of a mutation rate modifier is given by setting B0

1
= B1 in Eq. (S89),

which yields the leading order contribution
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where we have assumed that G2/B1 ⇡ 2log(#B1)/log(B1/*1) and log
�
*

0

1
/*1

�
⌧ G2B1/E ⇡ log(B1/*1) �

1. This matches the result previously derived in Ref. (26). The heuristic picture is similar to the one
described in that work: a mutation rate modifier must also arise in the high-fitness nose of the fitness
distribution (G ⇡ G2) and accrue G2/B1 additional mutations to fix. In each of these G2/B1 steps before a
coalescent event, the mutation rate modifier produces*0

1
/*1 more offspring, leading to the observed scaling

in Eq. (S91).
More generally, we see that the fixation probability of a joint selection strength and mutation rate modifier

can be expressed in terms of the fixation probabilities of these stand-alone modifiers,
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where U = B2
1
/B

02
1

. The presence of this factor U indicates that a change to the selection strength of mutations
can modulate the effect of a linked mutation rate change. The effect of this interplay can be extremely
important to determining the fate a modifier mutation, causing modifiers that would be disfavored by natural
selection without this modulation to be favored. Interestingly, the modulation effect only works in this
direction: modifiers that would be favored without the effect cannot actually be deleterious.
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4.1.5 Modifiers with direct costs or benefits

Finally, we can extend these calculations to modifiers with direct costs or benefits by combining our results
from SI Sections 4.1.3 and 4.1.4. Generalizing Eqs. (S73) or (S83) to this case yields
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Our analysis above suggests that the two key considerations will be (i) the sign of B<, and (ii) where G2 + B<
falls relative to the internal scales of F<(G) (e.g. G2<, G2< � B

0

1
, etc.).

Modifiers with direct fitness benefits. For a modifier with a direct fitness benefit (B< > 0), the exponential
term will once again amplify the contributions from higher fitness values. The behavior of Eq. (S93) will
therefore strongly depend on the location of the upper limit of integration. If B< � (G2< � G2) > O(E/G2<),
there will be a new contribution from the Haldane region of F<(G), so that
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Since G2 �
p
E, the upper limit from the Haldane region can be taken to infinity, so that Eq. (S94) reduces to
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In the opposite case, where B< Æ G2< � G2 � O(E/G2<), the upper limit of integration in Eq. (S93) will
fall below the interference threshold of F<(G). When B< > 0, this will only occur when G2< > G2 (i.e.,
when the modifier would be disfavored on its own). Similar to the pure modifier case in Eqs. (S86) and
(S88), the behavior of Eq. (S93) will depend on where G2 + B< falls relative to the internal scales of F<(G).
If G2< ¶ G2 + B< ¶ G2< � B
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1
, then the dominant contribution will come from the = = 0 region of Eq. (S68),

so that
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More generally, if we have

G2 + B< = G2< � :B
0

1
� � , (S97)

for some � 2 (0, B0
1
), then the primary contribution will come from the = = : region of Eq. (S68). This

25



yields

?̃fix(`(B) � `<(B), B<) ⇡
G2<B

0

1

G2B1

4

G
2
2
�G

2
2<

2E

⇣
G2<�B

0

1

G2<

⌘
:

:!
4
�

: (:�1)B02
1

2E

π
G2<�:B

0

1
��

G2<� (:+1)B0
1

4

GB<

E
�

B
2
<

2E �
:B

0

1
(G2<�:B

0

1
�G)

E

3G

B
0

1

,

⇡
G2<B

0

1

G2B1

4

G
2
2
�G

2
2<

2E +
G2<B<

E
�

B
2
<

2E

⇣
G2<�B

0

1

G2<

⌘
:

4
�

: (:�1)B02
1

2E �
(:B

0

1
+�)B<
E

�
:B

0

1
�

E

✓
1 � 4

�
(B<+:B

0

1
) (B

0

1
��)

E

◆

:!
⇣
(B<+:B0

1
)B0

1

E

⌘ .

(S98)

Modifiers with direct fitness costs. For a modifier with a direct fitness cost (B< < 0), the exponential
term will once again amplify contributions from lower fitness values, and must eventually be cut off by the
= = : + 1 term in Eq. (S68), where : is defined by

|B< | = :B01 + � , (S99)

for some� 2 (0, B0
1
). The major difference from the first-order selection scenario in Eq. (S82) is that the upper

limit of integration includes an additional term, G2�G2<. If G2< < G2 (i.e. a positively selected modifier), then
the upper limit of integration is larger than in Eq. (S82). This can in principle lead to contributions from the
= < : terms in Eq. (S68). However, the = < : terms will all be smaller by exponential factors of O(B

2
1
/E) so

they will provide a negligible contribution when B1 �
p
E. The larger upper limit of integration will therefore

only alter the = = : integral in Eq. (S79), shifting it from G2< � :B
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1
� �! min{G2 � :B0

1
� �, G2< � :B
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1
}.

This implies that the modifier fixation probability will be given by a slight generalization of Eq. (S82),
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which will be valid for G2< < G2. The opposite scenario (G2< > G2) corresponds to a negatively selected
modifier that has an additional a direct cost. We will not consider such mutations here, as they will have a
negligible chance of fixing.

Leading order scaling. Combining these expressions, we see that the leading-order solution for the fixation
probability of a modifier with a direct cost or benefit can be summarized as,
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Interestingly, we see that this fixation probability decomposes into contributions from first- and second-order
selection,

log ?̃fix(`(B) � `<(B), B<) ⇡ log ?̃fix((*1, B1) � (*
0

1
, B

0

1
)) + W · log ?̃fix(B<) , (S102)

where ?̃fix((*1, B1) � (*
0

1
, B

0

1
)) is the fixation probability of a modifier without direct costs or benefits,

?̃fix(B<) is the fixation probability of a first order mutation, and the weighting factor W satisfies W =
min(G2</G2,

p
2B1/G2). The presence of this factor W demonstrates that second order selection modulates

the effects of first order selection; the fixation probability of a deleterious or beneficial mutation arising in the
background population scales with G2/E, while the contribution of a direct cost or benefit scales with G2</E.
This means that a modifier without direct costs or benefits that is favored by natural selection (G2< < G2)
suppresses the contribution of a direct cost, while a modifier without direct costs or benefits that is disfavored
by natural selection (G2< > G2) amplifies the contribution of a direct benefit. This effect can be extremely
large, affecting the contribution of a direct cost or benefit and overall favorability of a modifier mutation by
orders of magnitude.

For sufficiently large direct benefits ( |B< | � G2), we expect that even the most deleterious modifiers
must fix deterministically upon surviving genetic drift, irrespective of the background on which they arise
(?fix/?0 ⇡ 2#B<). This expectation follows from the fact that a modifier with a large direct benefit will jump
far out ahead of the ’traveling wave’ and take over the population long before the background population is
able to ’catch-up’. This is true even in the extreme case of a dead-end modifier, which would drive the rate
of adaptation to zero upon fixing. Our current theoretical approach, however, does not enable us to predict
the fixation probability of a modifier with direct benefits B< ⇠ O(G2). In particular, to derive Eq. (S34) we
assumed that the fate of a modifier mutation is determined at small frequency while competing against the
mean fitness set by the rate of adaptation of the background population. However, if the rate of adaptation
does not change, our theory predicts the background population will always “catch up” and pass a deleterious
modifier in fitness, no mater how large the direct benefit. This pathology can be seen in Eq. (S57), where
limB

0

1
!0 G2< = 1.

This limitation prevents us from understanding a key aspect of the trade-off between short-term fitness
and long-term evolvability. How large a direct benefit is sufficient to drive a deleterious modifier to be
favored? In the next section, we focus on the extreme case of an evolutionary dead-end (*

0

1
= 0 or B0

1
= 0),

showing that even modest direct benefits can drive these modifiers to be favored by selection.

4.1.6 Fixation of a dead-end modifier

When a dead-end modifier arises with an extremely large direct benefit ( |B< | � G2), it will sweep long
before the background population is able to catch-up in fitness. On the other hand, if the direct benefit is not
sufficiently large, the background population will surpass the modifier lineage in fitness. We can understand
this cross-over by analyzing the dynamics of a modifier lineage arising with landing fitness, G, as it transitions
from small to large frequency.

A newly established modifier clone with relative fitness G will initially start to grow deterministically as

5<(C) ⇡
4
GC�

EC
2

2

2#G
, (S103)

where 1/2#G corresponds to the size of the clone immediately after it establishes. This will be a good
approximation as long as the modifier frequency remains small ( 5< ⌧ 1), so that the mean fitness of the
population is still primarily determined by the wildtype (mC- (C) ⇡ E). If G ⌧

p
2E log(#

p
E), then the
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modifier clone will remain small throughout its entire lifetime, and the wildtype population will eventually
pass it by. However, for larger initial fitnesses, the modifier clone will eventually grow to O(1) frequencies,
and will start to exert its own effect on the population mean fitness. At this point, the dynamics in Eq. (S103)
will start to break down.

The ultimate fate of a dead-end modifier will depend on how much fitness the wildtype population has
gained during this time. To understand this process, let C⇤ denote the time required for the modifier clone to
reach a reference frequency 5

⇤
<

. If 5 ⇤
<
⌧ 1, then C⇤ can be calculated from Eq. (S103):

log 5 ⇤
<
= � log(2#G) + GC⇤ �

EC
⇤2

2
. (S104)

During this time, the wildtype population will have increased in fitness by a total amount �G = EC⇤, so that
the current relative fitness of the modifier is G � EC⇤. If the nose of the wildtype population has surpassed
the modifier in this time (G2 ¶ G � EC

⇤), then regardless of how much the modifier grows in the short-term, it
will be destined for extinction in the long-term, since it is unable to produce additional mutations.

On the other hand, if G � EC⇤ > G2, then it is possible for the modifier to sweep through the rest of
population extremely rapidly, and “freeze” the wildtype population in its place. If further adaptation of the
wildtype can be neglected, then the modifier will transition from from frequency 5

⇤
<

to 1 � 5
⇤
<

according to
the logistic dynamics,
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which requires an additional time interval
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Since we have assumed that G � EC⇤ � G2, it is always possible to choose a reference frequency 5
⇤
<

that
is ⌧ 1, but large enough that Eq. (S106) is much smaller than the time required for the wildtype population
to acquire one additional mutation (B1/E). For example, choosing 5

⇤
<
= exp(�

p
G2B1/E) ⌧ 1 yields
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since G2B1/E � 1. This shows that the wildtype population is effectively frozen in place while the modifier
transitions from 5

⇤
<

to 1 � 5
⇤
<

. At this point, the mean fitness of the population is dominated by the modifier
(- ⇡ G � EC

⇤). Since we have assumed that G � EC⇤ > G2, this implies that even the fittest individuals in
the wildtype population now have a negative relative fitness, so their further adaptation will be effectively
halted. The modifier clone will therefore continue to sweep through the population, and will fix in a time of
order ⇠(G � EC⇤)�1 log(# (G � EC

⇤
) 5

⇤
<
).

Based on this reasoning, we conclude that a newly established modifier will fix if its initial fitness exceeds
a critical threshold G⇤ defined by

G
⇤
� EC

⇤
⌘ G2 + �G , (S108)

where �G is a small correction term [Æ O(B1)] that accounts for potential ambiguities in the definition of the
nose, as well as the possibility that a leapfrogged nose may produce one additional mutation via stochastic
tunneling (100) before it goes extinct. It is also accounts for the fact that a small subclass of individuals in the
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background population will need to have fitness greater than G⇤ to out-compete the modifier after the mean
fitness changes. The size of this subclass can be determined by requiring that the sum of the establishment
probabilities of the individuals that have crossed G⇤ be equal to 1,
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Assuming E/G2 ⌧ G
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� G2 and G2 � (G
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E, we can evaluate this integral with a Laplace

approximation to obtain the self-consistent solution,

�G ⌘ G⇤ � EC⇤ � G2 ⇡ �
E

G2

log

✓
G2B1

E

·
G
2
2

E

◆
. (S110)

This constitutes a small correction to G⇤ (as expected), but we will see that it provides an important contribution
to the fixation probability below. To solve for G⇤, we can substitute Eq. (S110) into Eq. (S104) to obtain the
condition,
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where we have also used Eq. (S72) to substitute for # . In our regime of interest where G2 �
p
E, the terms

on the left will be asymptotically larger than those on the right, and the dominant balance will be given by
the terms in the square brackets, yielding
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This result implies that a modifier lineage with relative fitness greater than G⇤ ⇡
p

2 · G2 will be guaranteed to
fix as long as it survives genetic drift while rare — regardless of its ability to produce additional mutations.
This will always be consistent with the wildtype F(G) function from the branching process approximation in
SI Section 4.1.3, since G⇤ > G2. However, it suggests that the interference threshold for the modifier lineage
must be capped at a maximum value,

G2< ⇡ min
�
G
0
2<

, G
⇤
 
, (S113)

where G0
2<

is our original solution for the interference threshold derived in SI Section 4.1.1 above. This
constitutes a simple modification of the original branching process model in Eq. (1) that can capture some
of these non-linear feedback effects.

In the extreme case of a dead-end modifier (`(B) ! 0), this ansatz leads to a conditional fixation
probability of the form

F<(G) ⇡

(
2G if G � G

⇤,
0 else .

(S114)

Substituting this result into Eq. (S93) yields a prediction for the total fixation probability of a dead-end
modifier with a direct benefit B<:
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Evaluating the integral in the upper branch yields,
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where�(I) = 1
p
2c

Ø
I

�1
4
�D

2
/2
3D is the Gaussian cumulative distribution function. The leading-order scaling

is given by
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These results suggests that modest direct benefits of size B< ¶ G
⇤
� G2 ⇡ (

p
2�1)G2 are sufficient to cause an

evolutionary dead-end to be favored by natural selection. While this critical size is larger than the advantage
of a single mutation (B1), it is smaller than the total fitness variation in the population (G2), and is only weakly
dependent on #*1. This contrasts with the traditional linear scaling observed in models with small numbers
of competing loci (101), highlighting the unique features that arise in genome-wide models of adaptation.

Together, this analysis shows that the fate of a dead-end modifier is still determined by chance events
that occur while the modifier lineage is at low frequency (e.g. its random genetic background and whether it
survives genetic drift while rare) even though its ability to take over critically relies on non-linear feedbacks
that occur while it is common.

4.1.7 Relation between the fixation probability and the long-term rate of adaptation

It is useful to compare these results with the deterministic modifier theory in SI Section 1, which predicts
that modifiers will be favored if they increase the long-term mean fitness of the population. While this result
was originally derived for non-adapting populations at mutation-selection balance, a natural extension of
this idea to adapting populations might suggest that natural selection would favor modifiers that increase the
long-term rate of adaptation (i.e. E< > E).

Our results above show that this simple heuristic clearly breaks down for modifiers with direct costs or
benefits (Fig. 3). This discrepancy is most dramatic for the “dead-end” modifiers in SI Section 4.1.6, which
can be strongly favored by selection even though they lower the rate of adaptation to zero. Our analysis in
SI Section 4.1.6 showed that the origin of this effect could be traced to the early fixation of the modifier
lineage before its long-term costs are fully realized. These fixation events are completely neglected by
the deterministic theory in SI Section 1: beneficial variants can grow to arbitrarily large frequencies in the
short-term, but their long-term fitness gains will always override their initial costs or benefits. This highlights
how finite population sizes can be critically important, even when the population size is very large (51).

To understand this relationship in more detail, we can combine our results in Eqs. (S59), (S72), and S101
to derive an approximate formula connecting ?fix, E<, and B<. In the limit that G2 � B1 and G2< � B

0

1
, we

find that the leading-order contributions satisfy the approximate scaling,

log ?̃fix(`(B) � `<(B), B<) ⇡
G
2
2<

2E

⇣
E<

E

� 1
⌘
+
G2<B<

E

, (S118)

to leading order in the logarithm of ?̃fix. This result shows that in the absence of direct costs or benefits
(B< = 0), the sign of selection in our simple model is directly related to the modifier’s effect on the long-term

30



rate of adaptation (E<�E). This is reminiscent of the mean fitness principle in SI Section 1. Equation (S118)
allows us to generalize this result to modifiers with direct costs or benefits (B< < 0). Interestingly, we find
that Eq. (S118) has the same form as the deterministic prediction in Eq. (S5) if we take -< ⇡ B< + E<C and
-F ⇡ EC, as expected, but impose a finite integration time )max = G2</E. This time limit roughly coincides
with the fixation time of a successful mutation. This allows us to recover a version of the mean fitness
principle in SI Section 1: within our simple clonal interference model, natural selection will favor modifiers
that produce a higher mean fitness within a typical fixation time.

We note, however, that Eq. (S118) is only an approximate formula, which captures the leading-order
scaling of the logarithm of ?fix (rather than ?fix itself). The sub-leading contributions to the logarithm are
often important in practice, since they can be large in an absolute sense (¶ 1) and must be exponentiated to
obtain ?fix. Thus, while Eq. (S118) can provide a useful rule of thumb, we use the full expressions in SI
Section 4.1.5 when calculating our theoretical predictions in Figs. 2 and 3 in the main text.

4.2 Quasi-sweep regime
4.2.1 Location of the interference threshold

As we consider larger values of B0
1
, we will eventually reach a regime where a single established driver

mutation will be sufficient to drive a modifier lineage to fixation (B0
1
� G2< �

p
E). To solve for the shape of

F<(G) in this regime, we first revisit the auxilliary condition for G2< in Eq. (S54). When B0
1
� G2< �

p
E,

this integral is dominated by fitnesses within O(
p
E) of H = B

0

1
, where the shoulder solution has already

transitioned to the linear Haldane limit. Performing a Gaussian Laplace approximation around this maximum
yields a new auxiliary condition for G2<,
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p
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4
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2E , (S119)

which is valid when B0
1
� G2< �

p
E and G2< �

p
E. Solving for G2<, we obtain the leading order solution,
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which is valid when
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This is a broad regime when *1 ⌧ B1, but violations of this condition can become important when we
consider continuous distributions of fitness effects below (SI Section 5). It will also be useful to derive an
alternative expression for G2< by substituting the auxilliary condition for G2 in Eq. (S58) into Eq. (S119),
yielding

G
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The leading order solution is given by

G2< ⇡

q
(2G2 � B1)B1 � 2E log(*0

1
/*1) , (S123)
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where we have included the potential contribution from log(*0

1
/*1), but assumed that the corresponding

log(B0
1
/B1) term is subdominant. The condition that B0

1
� G2< �

p
E will be valid provided that
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which complements the analogous condition for the mulitple mutations regime in Eq. (S60). Thus, for a
pure selection strength modifier, the quasi-sweep regime will occur for B0

1
�

p
(2G2 � B1)B1, while a pure

mutation rate modifier requires the more stringent condition, log
�
*

0

1
/*1

�
¶ (G2 � B1)B1/E. This suggests

that relatively modest changes to the selection strength will require the analysis described below.

4.2.2 Extending the shoulder solution to lower fitness values

Having fixed the location of G2<, we can repeat the procedure in SI Section 4.1.2 to compute the shape of
F<(G) for fitness values below G2<. If G + B0

1
¶ B1 + O(

p
E), then the dominant contribution to Eq. (S54)

will be contained within the region of integration, so that we can substitute the auxilliary condition to obtain

F<(G) ⇡ 2G2<4
G
2
�G

2
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2E . (S125)

This once again coincides with the shoulder solution in Eq. (S43) in the region where G < G2< � O(E/G2<).
This derivation shows that the shoulder solution will continue to be valid for fitnesses as low as

Gmin(`<(B)) = O(
p
E) , (S126)

which is significantly smaller than both B0
1

and G2<.
For fitnesses that are less than �O(

p
E), the integral in Eq. (S53) will start to be dominated by the upper

limit of integration at G + B0
1
. Provided that G + B0

1
�O(E/(B

0

1
� G2<)) ¶ G2< + O(E/G2<), then the dominant

contribution to the integral will still come from the Haldane region of the shoulder solution. An exponential
Laplace approximation then yields
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where we have substituted the auxilliary condition in Eq. (S119). To capture the behavior in the intermediate
region around G = ±O(

p
E), we can turn to the full Gaussian integral,
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where �(I) = 1
p
2c

Ø
I

�1
4
�D

2
/2
3D is the Gaussian cumulative distribution function. This reduces to

Eqs. (S125) and (S127) in the appropriate limits, but captures the intermediate region where G = ±O(
p
E).

For fitness below G2<� B
0

1
�O(E/G2<), the upper limit of the integral in Eq. (S53) will start to fall within

the exponential region of the shoulder solution in Eq. (S43). However, since the latter smoothly maps on to
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the Gaussian integral in Eq. (S128), we can use this solution to extend F<(G) down to G ⇡ G2< � 2B1:
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Iterating this procedure again yields

F<(G) ⇡ 2G2<4
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which will be valid for G 2 (G2< � 3B0
1
, G2< � 2B0

1
). More generally, for G 2 (G2< � (= + 1)B0
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one can show that the solution for F<(G) is given by:
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which simplifies to,
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and approaches the asymptotic limit,

F<(G) ⇡ 2G2<4
�G

2
2<

2E

✓
*

0

1

B
0

1

◆
=

E

B
0

1

p
2cE

1

�(1 +
|G |

B
0

1

)

G + (= + 1)B0
1

|G + =B0
1
|

⇡

2B0
1

⇣
*

0

1

B
0

1

⌘
=+1

�(1 +
|G |

B
0

1

)

G + (= + 1)B0
1

|G + =B0
1
|

(S133)

when G Æ �=B
0

1
� O(

p
E). Each additional ”step” reduces the original shoulder by a factor of (*0

1
/=B
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1
)
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For fitness values that are many multiples of B0
1

below G2<, we can substitute = ⇡ (G2< � G)/B
0

1
to show that

the leading order contribution to F<(G) scales as
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which obeys the required boundary condition that F<(G) � 0 as G � 1. Thus Eq. (S132) provides
an asymptotic solution for F<(G) that is valid across the full range of relative fitness below G2< when
B
0

1
� G2< �

p
E.
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4.2.3 Fixation probabilities of modifiers

Using the solution for F<(G) in Eq. (S132), we can repeat our calculations from SI Sections 4.1.4 and 4.1.5
to predict the fixation probabilities of modifier mutations in the quasi-sweep regime.

Modifiers without direct costs or benefits. In the absence of direct costs and benefits, the primary contri-
bution to the fixation probability in Eq. (S70) will come from the = = 0 region of Eq. (S132). This yields
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Using Eqs. (S72) and (S119), we can rewrite this expression in the compact form,
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This expression has a simple heuristic explanation. A modifier lineage founded at relative fitness G will
produce a total of #*0

1

Ø
1

0
4
GC�

EC
2

2 3C offspring before it is purged from the population. The modifier lineage
will produce the bulk of these offspring within ⇠ 1/

p
E generations of time C = G/E, when it will have reached

size =(C = G/E) = 4 G
2

2E and be near the mean fitness of the population. These offspring will fix provided they
survive genetic drift, which occurs with probability ?est ⇡ 2B0

1
. Multiplying these terms together, we see

that the advantage of arising on a more fit background and hitchhiking to exponentially larger frequency is
exactly balanced by the exponentially smaller probability of arising on one of these privileged backgrounds
5 (G) ⇠ 4

�
G
2

2E . Consequently, a successful modifier is equally likely to have arisen on a background with
relative fitness in the range O(

p
E) < G < min{G2<, G2}.

By comparing Eq. (S91), Eq. (S90), and Eq. (S136) and Eq. (S89), we can see that there is a limit to
the degree in which changes to the selection strength of mutations can modulate the effect of linked changes
to mutation rate (log(*0

1
/*1) < (G2 � B1)B1/E)): U = max{(B0
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/B1)

2
, B1/G2}. When B0
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mutation rate modification influences only a single subsequent mutation compared to multiple mutations
when G2< � B
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E. We also note that Eq. (S136) implies that large changes to the mutation rate

(log(*0
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/*1) < (G2 � B1)B1/E) < (G2 � B1)B1/E) + B

2
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/2E) can modulate the effect of a selection-strength

modifier, limiting its ability to compound.

Modifiers with direct fitness benefits. For a modifier with a direct fitness benefit (B< > 0), the fixation
probability in Eq. (S93) will once again depend on how the upper limit of integration (G2 + B<) compares to
the interference threshold G2<. If B< ¶ G2< � G2 + O(E/G2<), there will again be a contribution from the
Haldane region of F<(G), so that

?̃fix(`(B) � `<(B), B<) ⇡
G
2
2<

G2B1

4

G
2
2
�G

2
2<

2E �
B
2
<

2E

π
G2<

0
4

GB<

E ·
3G

G2<

+

π
G2<+B<� (G2<�G2 )

G2<

2#G4�
(G�B< )

2

2E

p
2cE

3G ,

⇡
G
2
2<

G2B1

4

G
2
2
�G

2
2<

�B
2
<

2E

 
4

G2<B<

E � 1
G2<B<

E

!
+ 2#B< · �

✓
B< � G2<

p
E

◆
, (S137)

where �(I) = 1
p
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Ø
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2
/2
3D is the Gaussian cumulative distribution function.
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In the opposite case, where B< Æ G2< � G2 � O(E/G2<), the upper limit of integration in Eq. (S93) will
fall below the interference threshold of F<(G). Repeating the calculation in Eq. (S137) in this case yields
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Modifiers with direct fitness costs. For a modifier with a beneficial effect on evolvability (G2 > G2<) but a
direct fitness cost (B< < 0), the derivation will be similar to Eq. (S100) above. The dominant contribution to
the fixation probability in Eq. (S93) will again come from the = = : term in Eq. (S132) (as well as the first
portion of the : + 1 term), where : is defined by

|B< | = :B01 + � , (S139)

for some � 2 (0, B0
1
). The fixation probability of the modifier can therefore be approximated as
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where Z ⌘ max{0,� � (G2 � G2<)}. When : = 0 and � Æ O(
p
E), the fixation probability is dominated by

the portion of the first term where �(I) ⇡ 1. This yields the asymptotic approximation
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On the other hand, when O(
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E) Æ � Æ B
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E), the fixation probability will be dominated by the

sum of the first three terms. These contributions will be peaked around a narrow interval near G⇤ = �:B
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where the sum of the first three terms transitions to the asymptotic expression in Eq. (S133):
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which is valid for O(
p
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), the fixation probability will be dominated by the sum of all four terms, but the first three
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will be peaked near the lower boundary. This yields
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which is valid for B0
1
�G2<+O(

p
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). The leading order solution for the fixation probability

can therefore be summarized as
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5 Extension to continuous distributions of fitness e�ects
So far, we have focused on a simplified model of the mutation spectrum, where all new mutations confer
the same characteristic fitness benefit. In reality, beneficial mutations can have a range of different fitness
benefits, so a general evolvability modifier will involve an arbitrary perturbation to the distribution of fitness
effects,

X`(B) = `<(B) � `(B) , (S145)

which could include the addition or subtraction of mutations with a range of different fitness benefits. This
forces us to return to the full solution in Eq. (S44) of SI Section 3,
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along with the corresponding condition for G2<,
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both of which now include an integral over the fitness benefit of the next mutation (B) in addition to its
landing fitness (H). The solutions to this equation are more complicated than the single-effect model in SI
Section 4, since the H values that contribute the most to each integral will depend on the corresponding value
of B (and vice versa).

However, previous work (42, 43) has shown that for a broad class of distributions with exponentially
bounded tails, the integrals over B are dominated by a characteristic fitness effect B0

1
when G � G2 � B

0

1
. This

is a crucial simplification, as it implies that for this range of fitnesses, the shape of F<(G) and the location of
G2< can be well approximated by the single-s solutions in SI Section 4 for some appropriately chosen values
of B0

1
and *0

1
(42, 43, 51, 52). These effective parameters will depend on the underlying values of `<(B),

G2<, and E, and must be determined self-consistently using the procedures described below.
In this section, we ask whether this same idea can be extended to the full range of G values in Eq. (S146),

which is necessary for predicting the modifier fixation probability, ?fix(`(B) ! `<(B), B<). We will see
that the single-s approximation holds for certain classes of modifiers, but not others, and we will develop
methods for approximating ?fix(`(B) ! `<(B), B<) in both cases.

To carry out this analysis, we note that the integral formulation in Eqs. (S146) and (S147) naturally
decomposes the fixation probability into contributions from different fitness benefits. By splitting `<(B)
into its components, `<(B) = `(B) + X`(B), it also allows us to infer the relative contributions of `(B) and
X`(B). We can make this connection even more explicit by rewriting Eq. (S147) in the form,
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where
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F<(G + B) 3G (S149)

is the fixation probability of a first-order mutation in the “dual” population defined by E(`<(B), #
⇤
) =

E(`(B), #) (see Eq. S38 in SI Section 3).
The decomposition in Eq. (S148) allows us to distinguish between two broad regimes depending on the

relative contributions of `(B) and X`(B). When the fixation probability of the modifier is dominated by
mutations from `(B), then B0

1
and G2< will remain close to their wildtype values. This allows us to calculate

G2< and ?fix(`(B) ! `<(B), B<) perturbatively, by treating the X`(B) term as a small correction. We will
refer to this case as the perturbative regime, since it will only apply for modifiers with weak-to-moderate
fixation probabilities. For stronger second-order selection pressures, the fixation probability of the modifier
will be dominated by mutations from the X`(B) portion of `<(B). In this modifier-dominated regime, we
will need to turn to the full solution of F<(G), with `<(B) ⇡ X`(B). We will discuss each of these cases in
turn, after quickly reviewing the wildtype dynamics when X`(B) = 0.

5.1 Location of the interference threshold for the wildtype population
When X`(B) = 0, Eq. (S147) determines the location of interference threshold for the wildtype population,
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The solution to this equation was previously described by Ref. (42). We reproduce it here for completeness,
since we will build on this result in the following sections.

Ref. (42) showed that in our parameter regime of interest, the B integral in Eq. (S150) will be strongly
peaked at a characteristic value, B1, which will be determined self-consistently below. This observation
allows us to evaluate the inner integral over H for B close to B1. When G2 � B1 �

p
E, the contributions from

H < G2 will be dominated by H within O(E/B) of G2, while the contributions from H > G2 will be dominated
by fitnesses within O(E/(G2 � B)) of G2. Equation (S150) then reduces to a single integral over B,
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where the rapidly increasing exponential term is eventually counteracted by the rapidly decreasing `(B) term.
When G2 � B1 �

p
E, the competition between these two factors produces a sharp peak around B ⇡ B1 ±�B1,

where B1 is the value of B that maximizes the rapidly varying portion of the integrand,

G2 � B1 + E
mlog`(B1)

mB

= 0 , (S152)

and �B1 is the characteristic width,
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When B1 � �B1, we can evaluate Eq. (S151) with a Gaussian Laplace approximation to obtain
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where the effective mutation rate,

*1 =
p

2c�B1`(B1) , (S155)

denotes the total rate of producing “driver” mutations within �B1 of B1. This matches the corresponding
expression for the single-effect model in SI Section 4 if the effective selection strength and mutation rate are
defined by Eqs. (S152) and (S155). Unlike SI Section 4, these effective parameters will now depend on the
underlying values of `(B) and # , and can shift if one or the other is varied (42, 43, 51, 52). This behavior
will be crucial for understanding the fates of modifier mutations below.

Application to stretched exponential distributions. Following previous work (42, 43, 51), we can gain
some intuition for these expressions by considering the class of stretched exponential distributions,
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B0
·
4
� (B/B0 )

V

�(1 + V�1)
, (S156)

as a function of the tail parameter V � 1. Ref. (42) showed that the effective parameters for the exponential
case (V = 1) are given by
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E , (S157a)

leading to the approximate scaling,
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Similarly, the solution for the V � 1 case is given by
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with
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log(
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In our analysis below, we will find that the V = 2 case (corresponding to a half-Gaussian distribution) will
serve as an important boundary case, so it will be useful to derive an explicit expression for this case as well.
Equations (S152) and (S153) imply that
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which yields the asymptotic approximations
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When E/B20 ⌧ 1, this solution behaves like the exponential case above (with B1 ⇡ G2). This regime will be
valid provided that

1 ⌧ log(#*0) ⌧ log(B0/*0) . (S160)

On the other hand, when E/B20 � 1, the solution will behave more like the V � 1 case (B1 ⌧ G2). This
regime will be valid provided that

1 ⌧ log(B0/*0) ⌧ log(#B1) ⌧ log2(B0/*0) . (S161)

which mirrors the conditions of validity for the single-effect model in SI Section 4.

5.2 Perturbative regime
5.2.1 Location of the interference threshold

In the perturbative regime, we assume that the dominant contribution to Eq. (S147) still comes from the `(B)
term. This suggests that G2< will remain close to the wildtype interference threshold,

G2< = G2 + XG2 , (S162)
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where XG2 is a small correction whose magnitude will be determined self-consistently below.
If XG2 ⌧ E/B1, then the integral over B will remain strongly peaked around the same value as the wildtype

integral in Eq. (S151). This implies that

B1 (#
⇤
) ⇡ B1 (#) , *1 (#

⇤
) = *1 (#) , (S163)

where B1 and*1 are defined as in Eqs. (S152) and (S155), and that
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From the self-consistency condition for # in Eq. (S72), we also have
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and

#
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⇡ 4
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Substituting these results into Eq. (S148), we obtain
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is the integral from Eq. (8) in the main text. Equation (S167) shows that � (X`, XG2) can be interpreted as the
relative contribution of mutations from X`(B) vs `(B) when XG2 ⌧ E/B1. Substituting for the wildtype G2
condition [*1 ?̃fix(B1) = E/B1], we can rearrange Eq. (S167) to obtain

XG2 = �
E

B1

� (X`, XG2) , (S169)

which is valid when XG2 ⌧ E/B1. This shows that XG2 ⌧ E/B1 is equivalent to the condition that � (X`, XG2) ⌧
1. If XG2 ⌧ E/B for the fitness effects that dominate Eq. (S168), then we can perform the same Taylor
expansion obtain an analytical expression for XG2,
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which can be evaluated in terms of the wildtype interference threshold G2. For stronger fitness benefits, XG2
must be obtained by solving the implicit relation in Eq. (S169).
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5.2.2 Fixation probabilities of modifiers

When the above assumptions hold, the fixation probability of the modifier can be obtained from our previous
calculations in Eqs. (S83) and (S93). Since XG2 ⌧ E/B1 ⌧

p
E ⌧ G2, the fixation probability of a modifier

without direct costs or benefits will be dominated by exceptionally fit genetic backgrounds (G2�B1 Æ G Æ G2),
so that Eq. (S83) reduces to,
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Substituting our expression for XG2 in Eq. (S169) then yields

?̃fix(X`) ⇡ exp


G2

B1

· � (X`, XG2)

�
. (S172)

This shows that the conditions of validity for the perturbative regime,

XG2 ⌧ E/B1 () � (X`, XG2) ⌧ 1 , (S173)

are equivalent to the assumption that

| log ?̃fix(X`) | ⌧ G2/B1 . (S174)

Since G2 can be asymptotically larger than B1, this implies that a small change to the distribution of fitness
effects can be strongly selected (| log ?̃fix(X`) | � 1) even when it leads to a negligible change in B1 and
*1. The perturbative regime is therefore an example of a modifier mutation that cannot be reduced to the
single-effect model in SI Section 4.

It is straightforward extend this calculation to consider modifiers that also include direct costs or benefits.
Since the second-order selection pressures are bounded by Eq. (S174), most of the interesting behavior
will occur when |B< | ⇠ O(G2/B1) ⌧ B1. The fixation probability of these modifiers will continue to be
dominated by exceptionally fit genetic backgrounds (G2 � B1 Æ G Æ G2), so that Eq. (S93) reduces to

log ?̃fix(X`, B<) ⇡ log ?̃fix(X`) + log ?̃fix(B<) , (S175)

where ?̃fix(B<) is the fixation probability of a first-order mutation from SI Section 4.1.3.

5.3 Modifier-dominated regime (multiple mutations)
For stronger second-order selection pressures (| log ?̃fix(X`) | ¶ G2/B1), the fixation probability in Eq. (S146)
will start to depend more sensitively on the mutations that are added (or removed) by X`(B). For a strongly
beneficial modifier, the fixation probability will be dominated by the new mutations that are added by X`(B).
In contrast, a strongly deleterious modifier will be dominated by the mutations that remain once X`(B) is
subtracted from `(B). In both cases, we will need to develop a general solution for F<(G) for arbitrary
distributions `<(B) < `(B).

Following our analysis in SI Section 4, it will be useful to distinguish between two characteristic regimes,
depending on whether the dominant fitness benefits are smaller or larger than G2<. We will continue to
refer to these as the multiple mutations and quasi-sweeps regimes, respectively, since they will qualitatively
resemble their analogues in SI Section 4. We will start by analyzing the multiple mutations regime, while
the quasi-sweeps case will be considered in SI Section 5.4 below.
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5.3.1 Location of the interference threshold

When the relevant fitness benefits in `<(B) are small compared to G2<, we can repeat the calculation in SI
Section 5.1 to obtain an analogous condition for G2<,
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This integral will be peaked around a new value B0
1

that satisfies
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along with a new characteristic width,
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which will generally differ from the wildtype values of B1 and �B1 above. When B0
1
� �B0

1
an analogous

Gaussian Laplace approximation yields a simple expression for G2<,
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where we have defined the effective mutation rate
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Together, Eqs. (S177-S179) allow us to solve for B0
1
, *0

1
, and G2< as a function of `<(B) and E. These

expressions will be self-consistently valid when G2< � B
0

1
�

p
E.

5.3.2 Extending the shoulder solution to lower fitness values.

With the location of G2< fixed by Eq. (S179), we can repeat our calculation in SI Section 4.1.2 to extend the
shoulder solution for F<(G) to progressively lower fitness values. Provided that G + B0

1
¶ G2< + O(�B0

1
),

the dominant contribution to Eq. (S146) will also be contained within the region of integration. This
demonstrates that the shoulder solution will continue to be valid for fitnesses as low as

Gmin(`<(B)) = G2< � B
0

1
+ �B0

1
. (S181)

In particular, it shows that for G > Gmin(`<(B)), the shape of F<(G) can be approximated by a single-effect
model with B0

1
and*0

1
defined by Eqs. (S177) and (S180) above.

Hopping vs leapfrogging. When G Æ Gmin(`<(B)), the upper limit in the landing fitness integral in
Eq. (S146) will again become important. However, the crucial difference from our previous analysis in
SI Section 4.1 is that this upper limit is not a fixed parameter, but can vary as a function of B. In other
words, it is theoretically possible for the mutant offspring to land at any relative fitness value if it acquires
a sufficiently large beneficial mutation from `<(B). This is a new effect that is only present when we allow
for a continuous distribution of fitness effects. This will lead to two distinct classes of solutions for F<(G)
depending on the tail of `<(B).
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If the tail of `<(B) decays sufficiently rapidly, then a modifier lineage that arises below G2< � B
0

1
will

typically fix by “hopping” to higher relative fitnesses through a sequence of smaller mutations, similar to
the single-effect models in SI Section 4. However, if the tail of `<(B) decays more slowly, then a modifier
arising below G2< � B

0

1
will typically fix by generating a single large driver mutation that bypasses these

intermediate fitness values, and lands at or above interference threshold at G2<. This “leapfrogging” regime
is potentially empirically relevant, since it will apply when `<(B) decays like an exponential distribution.

By splitting the integral in Eq. (S146) into contributions from above and below the interference threshold,
we can obtain a corresponding expression for the fixation probability,
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which will be valid for G ¶ G2< � 2B0
1
+ O(E/B

0

1
+ �B1). It will be helpful to evaluate these expressions by

defining a new variable,
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such that �G 2 (0, B0
1
).

When �G ¶ O(�B1), then the lower limit of the integral in the first term in Eq. (S182) will lie in the high
fitness tail of `<(B). An exponential Laplace approximation around B = G2< � G = B0

1
+ �G then yields
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The integrand in the second term in Eq. (S182) has a critical point at B = B⇤(�G), which satisfies,
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This critical point will correspond to a local maximum if the second derivative is negative,
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The value of this integral will therefore crucially depend on the tail of `<(B).
If the curvature of `<(B) is sufficiently small [m2

B
log `<(B⇤) > �1/E], then B⇤ will correspond to a local

minimum of the integrand, and the integral will therefore be dominated by the upper limit of integration. An
exponential Laplace approximation then yields,

F<(G) ⇡
2G2<
|G |

·
`<(B

0

1
+ �G)

�mB log `<(B0
1
+ �G)

+
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·
`<(B

0

1
+ �G)

G2<

E
+ mB log `<(B0

1
+ �G)

. (S187)

Intuitively speaking, this says that the fixation probability is dominated by mutations of size B ⇡ B0
1
+�G that

result in a landing fitness very close to the interference threshold G2<. Since �G can be as large as B0
1

( which
is � �B0

1
), this constitutes an example of the “leapfrogging” behavior above, since it will involve a jump

much larger than B0
1
. From the form of the condition in Eq. (S186), we can see that this leapfrogging behavior
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will always occur for the exponential distribution in Eq. (S156), as well as the Gaussian case (V = 2) when
E/B

2
0 ⌧ 1. In these cases, we the single-s equivalence will break down for initial fitness below G2< � B

0

1
, and

we must use Eq. (S187) instead.
On the other hand, if the curvature of `<(B) is large and negative [�m2

B
log `<(B⇤) � 1/E], then B⇤ will

be a local maximum, and a Gaussian Laplace approximation yields
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When �m
2
B

log `<(B⇤) � 1/E, we can also solve Eq. (S185) perturbatively to show that B⇤(�G) is close to B0
1
:

B
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so that Eq. (S182) reduces to

F<(G) ⇡
2G2<
|G |

·
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. (S190)

The balance between these two terms will determine whether the typical successful lineage “hops” or
“leapfrogs” to fixation. Comparing the magnitudes of these terms, we find that the hopping term in
Eq. (S190) will dominate if

log
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This condition is more stringent than the one defining B0
1

in Eq. (S176), which has an additional B0
1
�G/E

term on the left hand side. This means that even if mutations above B0
1

are negligible for G ¶ G2< � B
0

1
, they

may become relevant for larger direct costs. When V � 2, the decay of `<(B) will still be bounded by its
Gaussian approximation,
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so Eq. (S191) reduces to

�
B
0

1
�G

E

+
�G2

2�B02
1

¶ O(1) . (S193)

The leapfrogging term will therefore be negligible for

�G ¶ O(B
0

1
· �B02

1
/E) , (S194)

which will constitute the majority of the interval (0, B0
1
) when E � �B02

1
— this is the same condition used to

evaluate the hopping term above. For more general choices of `<(B), the Gaussian approximation may no
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longer bound the value of `<(B0
1
+ �G), and full condition in Eq. (S191) must be used instead. When these

conditions are met, the fixation probability in Eq. (S190) will be well-approximated by the hopping term,
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where we have used the auxilliary condition in Eq. (S179) to eliminate the explicit dependence on `<(B0
1
).

This expression is identical to the result in SI Section 4.1.2, which shows that the single-B mapping continues
to apply for G ¶ G2< � 2B0

1
.

We can continue these calculations to extendF<(G) to lower fitness values. At the next rung [G2<�3B0
1
Æ

G Æ G2< � 2B0
1
], we can once again write G as

G = G2< � 2B0
1
� �G , (S196)

for some �G 2 (0, B0
1
), so that Eq. (S146) reduces to
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The first term in Eq. (S197) can be evaluated with a similar Laplace approximation as Eq. (S184), yielding
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The integral in the third term in Eq. (S197) is similar to the hopping term in Eq. (S182) (up to a prefactor).
This implies that it will have a critical point at B = B⇤(�G) with the same location and curvature as Eq. (S185).
Finally, the second term in Eq. (S197) corresponds to intermediate leapfrogging events of size B 2 (B

0

1
, 2B0

1
).

The integrand in this term will have a critical point at a new value, B⇤2, defined by

G2< � 2B0
1
� �G + B⇤2 + E

m log `<(B⇤2)

mB

= 0 , (S199)

which will generally be less than B⇤. If the curvature of `<(B) is small [�m2
B

log `<(B0
1
) < 1/E], then the

critical points in the second and third terms will once again correspond to local minima, and the fixation
probability will be dominated by the first term,
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|G |

`<(2B0
1
+ �G)
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, (S200)
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similar to Eq. (S187) above. On the other hand, if �m2
B

log `<(B0
1
) � 1/E, then B⇤(�G) ⇡ B

⇤

2(�G) ⇡ B
0

1
will

both correspond to local maxima, and the fixation probability will be dominated by the first and third terms:
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By comparing the magnitudes of these terms, we can see that the hopping term will dominate if
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and the corresponding fixation probability will be given by
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which matches the single-effect result from SI Section 4.1. For the class of stretched exponential distributions
in Eq. (S156) with V � 2, the mutation spectrum term will again be bounded by its Gaussian approximation,
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so that Eq. (S202) reduces to
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This shows that the hopping approximation will be valid whenever E � �B02
1

, which is the same condition
that we obtained for the previous interval above. One can continue this argument to show that for relative
fitnesses of the form,

G = G2< � =B
0

1
� �G , (S206)

with �G 2 (0, B0
1
), the hopping term will be given by
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and will constitute the dominant contribution whenever
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This shows that for the stretched exponential distributions in Eq. (S156) with V � 2, the single-B approxima-
tion will continue to apply for arbitrarily large fitness costs as long as E � �B02

1
.
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5.3.3 Fixation probabilities of modifiers

We can now use our solution for F<(G) to evaluate the fixation probability of a modifier mutation. When the
dynamics are dominated by hopping, we have seen that the functional form of F<(G) is well-approximated
by the single-B model in SI Section 4.1. This implies that the fixation probability of the modifier can be
predicted using our earlier expressions in SI Sections 4.1.4 and 4.1.5

?̃fix(`(B) � `<(B), B<) = ?̃fix((*1, B1) � *
0

1
, B

0

1
), B<) , (S209)

if (*1, B1) and (*
0

1
, B

0

1
) are chosen to coincide with the effective parameters defined in SI Sections 5.1 and

5.3.1 above. This approximation will be valid when log ?̃fix(`<) ¶ G2/B1 and G2< � B
0

1
¶
p
E. We used this

expression to obtain the theoretical predictions for the exponential distribution in Fig. 4C,D in the main text.
This single-s approximation will also be valid for `<(B) that allow for leapfrogging, as long as the direct or

indirect costs of the modifier are not too strong (B<+G2�G2< ¶ �B
0

1
). For larger costs (B<+G2�G2< Æ �B

0

1
),

we will need to modify Eq. (S209) to include the additional contributions from the leapfrogging term.
Substituting the solution for F<(G) in Eq. (S187) into Eq. (S93), we obtain
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where we have substituted the auxiliary condition for G2<. This integral will have a local maximum at D⇤,
where D⇤ satisfies
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and a characteristic width �D,
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We can therefore evaluate it with a Gaussian Laplace approximation to obtain,
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In the case of an exponential distribution, D⇤ = B0
1
� B< and �D =

p
E, so Eq. (S213) reduces to,
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For a half-Gaussian distribution, D⇤ = B0
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where the last approximation follows when B00 �
p
E. These results imply that the leading order scaling for

large direct costs when leapfrogging is valid is given by
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5.4 Modifier-dominated regime (quasi-sweeps)
The results in the previous section apply when G2< � B

0

1
�

p
E. As the gap between G2< and B0

1
shrinks,

we will eventually reach a point where a single established mutation will be sufficient to drive the modifier
lineage to fixation. To solve for the shape of F<(G) in this “quasi-sweeps” regime, we must revisit the
equations for F<(G) and G2< in Eqs. (S146) and (S147).

5.4.1 Location of the interference threshold

Motivated by our solution for the quasi-sweeps regime in SI Section 4.2, we anticipate that the dominant
contributions to the y-integral in Eq. (S147) come from the Haldane region of the shoulder solution (H > G2<).
When B ¶ G2< + O(

p
E), the integrand will be peaked around a characteristic value H⇤ = B ± O(

p
E).

Performing a Gaussian Laplace approximation around this maximum yields,
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This is similar to the single-effect model in SI Section 4.2.1 if we take
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The decomposition in Eqs. (S146) and (S147) shows that this B0
1

integral coincides with the distribution of
fixed mutations in the modifier lineage. In contrast to the multiple mutations regime in SI Section 5.3, the
distribution in Eq. (S218) may have a typical scale but will generally not be strongly peaked.

This quasi-sweeps regime will be self-consistently valid if Eq. (S217) is much larger than the remaining
contributions from H  G2<:
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For the stretched exponential distributions in Eq. (S156), this will only be true if G2< Æ B
0

0, so that*0

1
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0). This shows that the quasi-sweeps regime will be valid when
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5.4.2 Extending the shoulder solution to lower fitness values

We can continue this line of reasoning to compute the shape of F<(G) for fitness values below G2<. For
mutations with fitness effects B ¶ G2< � G + O(

p
E), the y-integral in Eq. (S146) will continue to have a
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large contribution from the Haldane region of the shoulder solution. For these values of B, we can repeat the
Gaussian integration in Eq. (S128) to obtain
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where �(I) = 1
p
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3D is the Gaussian cumulative distribution function. When G ¶ O(
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Gaussian cumulative function is close to one, and Eq. (S221) reduces to
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where the last line follows from substituting the auxiliary condition for G2< in Eq. (S217). This shows that
the shoulder solution will be valid down to Gmin = O(

p
E), similar to the single-effect model in SI Section

4.2.2.
When G Æ O(

p
E), the shape of �(G) will start to become important. At this point, the boundary terms

at G2< � B will become negligible, so that Eq. (S221) reduces to
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where the second line follows from substituting the auxiliary condition for G2< in Eq. (S217). This will
coincide with the analogous expression for the single-B model in 4.1.2 if
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This condition will be satisfied if G2< � G Æ B
0

1
, or alternatively, if G ¶ G2< � B

0

1
.

For lower initial fitnesses, the contributions from mutations that land below the interference threshold
(G + B < G2<) can begin to become important. We can estimate the onset of these effects by considering
initial fitnesses in the range �O(

p
E) ¶ G ¶ G2< � B
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1
. In this limit, Eq. (S223) reduces to
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where the second line follows from substituting the auxiliary condition for G2< in Eq. (S217). The corre-
sponding contributions from mutations with G + B < G2< in Eq. (S146) are dominated by the upper limit of
the H-integral, which yields an additional correction of order
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If the curvature of `<(B) is not too strong [mB log `<(B0
1
) ⌧ B

0

1
/E ⌧ B

0

1
], this B-integral will be dominated

by the upper limit of integration, so that

XF<(G) ⇡
2E · `(G2< � G)

G2< � G
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This will be small compared to Eq. (S225) as long as B0
1
¶ G2< �

p
E, which shows that Eq. (S223) will be

a good approximation for F<(G) as long as G ¶ G2< � B
0

1
.

For lower initial fitnesses (G Æ G2< � B
0

1
), these additional contributions will start to become important.

In principle, we can generalize the recursive approach in SI Section 4.2.2 to extend our solution for F<(G)
below this point. However, these corrections will no longer be universal, and will depend on other features
the mutation spectrum beyond the first two moments in Eq. (S218). Since our results in the main text will
only require the portion of the solution for G ¶ G � B

0

1
, we will leave these calculations for future work.

6 Incorporating deleterious mutations
While the previous sections have focused on changes to the beneficial mutation spectrum, the vast majority
of new mutations are neutral or deleterious (49). The most general evolvability modifiers could alter the
rates and fitness costs of these deleterious mutations as well.

Previous work (50, 112, 114) has shown in our parameter regime of interest, deleterious mutations can be
divided into two broad categories: (i) quasi-neutral mutations ( |B | ⌧ E/G2), which can frequently hitchhike
to fixation with beneficial mutations, and (ii) “purgeable” deleterious mutations ( |B | � E/G2), which rarely
reach high frequencies, but can collectively reduce the effective population size if their mutation rate is
sufficiently high. Previous estimates suggest that the overall mutation rates in many natural and laboratory
microbial populations are sufficiently low (* Æ 10�3 (66)) that both categories have a negligible impact on
the overall the rate of adaptation (50, 112). However, differences in the deleterious distribution of fitness
effects can still have a strong influence on the fixation probability of a modifier mutation (26).

We can incorporate purgeable deleterious mutations into our framework using the argument outlined
in Ref. (26), which we reproduce here for completeness. Ref. (26) showed that it is useful to rewrite the
mutation term in Eq. (S34) as separate beneficial and deleterious contributions,

0 = G · F<(G)|     {z     }
selection

� E · mGF<(G)|         {z         }
competition w/ wildtype

�
1

2
· F<(G)

2

|       {z       }
drift while rare

+

π
1

0
`<(B) [F<(G + B) � F<(G)] 3B|                                           {z                                           }

beneficial mutations

+

π
1

0
`<(�X) [F<(G � X) � F<(G)] 3X|                                              {z                                              }

deleterious mutations

(S228)

where we are indexing the deleterious mutations by their overall magnitude X ⌘ �|B |. The definition of a
purgeable mutation is that they rarely reach high frequencies, which implies that the fixation probability after
acquiring a purgeable mutation must be close to zero. If all of the deleterious mutations in `< fall in this
purgeable category, we can therefore neglect the F<(G � X) term in Eq. (S228). This allows us to rewrite
Eq. (S228) in the simpler form,

0 = (G �*
0

3
)F<(G) � E · mGF<(G) �

1

2
· F<(G)

2
+

π
1

0
`<(B) [F<(G + B) � F<(G)] 3B (S229a)
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where*0

3
denotes the total mutation rate for purgeable mutations:

*
0

3
=

π
1

0
`<(�|X |)3X . (S229b)

This equation has the same form as the purely beneficial case analyzed above, but with the G coordinate
shifted by �*

0

3
. The solutions can therefore be expressed in the simple form

F<(G) = F1<(G �*
0

3
) , (S230)

where F1
<
(G) denotes our existing results for the purely beneficial case. Likewise, previous work (26, 50)

has shown that the background fitness distribution satisfies an analogous formula,

5 (G) = 5
1

(G �*3) , (S231a)

where*3 is the rate of producing purgeable mutations in the wildtype background,

*3 =
π

1

0
`(�|X |)3X . (S231b)

Substituting these expressions into Eq. (2), we find that the fixation probability of the modifier can be written
as

?fix(`(B) � `<(B), B<) =
π

5
1

(G �*3) · F
1

<
(G �*

0

3
+ B<) 3G =

π
5
1

(H) · F
1

<
(H + B< �*

0

3
+*3) 3H ,

(S232)

which implies that differences in the purgeable mutation rate behave like effective direct cost,

B
eff
<

= *3 �*0

3
. (S233)

We validated this approximation using Wright-Fisher simulations (Fig. 3), and found that it encompasses
a broad range of deleterious fitness effects, including those much smaller than a typical beneficial driver
mutation (Fig. 3B). Deviations eventually occur for more weakly selected mutations, which have a lower
impact on the fixation probability than Eq. (S233) would predict. This suggests that purgeable mutations
represent an upper bound on the strength of second-order selection.

Interestingly, the mapping in Eq. (S233) implies that the same modulation effect that occurs between first-
and second-order selection will also apply for selection on simultaneous changes to robustness (*3 � *

0

3
)

and evolvability (`(B) � `<(B)). In particular, it implies that larger populations are more likely to trade
reduced robustness for long-term gains in evolvability. Since empirical deleterious mutation rates are often
comparatively low (|Be↵

<
| Æ B1), even the maximum possible reduction in robustness will be overpowered

by marginal increases in evolvability (Fig. 3C). The opposite scenario – greedily selecting for increased
robustness despite long-term reductions in evolvability – is also theoretically possible, but we expect that it
will be less relevant in practice due to the low deleterious mutation rates in many organisms.

Finally, we note that robustness and evolvability do not have to trade off with one other – several recent
studies have shown that they can sometimes interact synergistically as well (63, 65). Our analytical framework
also provides new predictions for these synergistic mutations, allowing us to determine how each phenotype
contributes to the lineage’s long-term evolutionary fate (Fig. 3E). Our results show that larger populations
will tend to weigh proportional enhancements in evolvability (�E/E) more heavily than comparable increases
in robustness (�*3/*3). This is qualitatively different from the successive sweeps picture (SI Section 2),
which predicts that the opposite ordering should occur. These examples illustrate how clonal interference
can reshape our intuition about second-order selection for evolvability.
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7 Extensions to more general fitness landscapes
Our analysis above focused on the simplest possible model of an evolvability modifier, where the local
distribution of fitness effects could be approximated by a pair of fixed distributions,

`(B |Æ6) ⇡ `(B) , `<(B |Æ6) ⇡ `<(B) , (S234)

for all genotypes Æ6 (SI Section 3.1). In this section, we consider several extensions of our model that relax
this assumption in different ways. In each case, we find that our existing theory provides a useful baseline
for incorporating these new effects.

7.1 Weak Macroscopic Epistasis
It is clear that some deviations from Eq. (S234) will be too small to be relevant to natural selection. We can
formalize this idea by considering subtle deviations of the form,

`(B |Æ6) = `(B) + n (B, Æ6) , (S235)

where the function n (B, Æ6) represents a small perturbation. In this case, our existing results in SI Section 5
allow us to precisely define what we mean by “small”. In particular, if we let X`(B) = n (B, Æ6), then we can
conclude that any perturbation for which the integral Eq. (8) is small [� (X`) Æ B1/G2] will be essentially
invisible to natural selection. Any deviations from Eq. (S234) that fall below this minimum resolution will
therefore not affect our main results.

We note that this space of “negligible” perturbations can be quite large from the perspective of the original
DFE. Fig. 4 shows that even large fluctuations in `(B) can be tolerated for fitness effects Æ B1 (`, #), even if
they cause in large shifts in the overall mean and height of the DFE. Conversely, much smaller perturbations
at fitness effects ¶ B1 (`, #) can lead to important deviations from our original model, even if they nominally
appear to satisfy Eq. (S234).

We also note that this argument constitutes an upper bound on the impact of a given deviation from
Eq. (S234), since our derivation of Eq. (8) assumed that the evolvability differences were permanent. This
means that some values of n (B, Æ6) that exceed the resolution limit above could still have a small influence on
the results because their evolvability differences are only transient. We consider such cases in more detail
below.

7.2 Transient di�erences in evolvability
In many cases of interest, the evolvability benefits of a modifier will not persist indefinitely (as in Eq. S234)
but will only apply within some local region of genotype space. For example, in the stability-activity
landscape in Extended Data Fig. 2C, the stability enhancing modifier creates an opportunity for  additional
mutations to accumulate. At a formal level, this constitutes a large deviation from Eq. (S234).

However, it is also clear that such permanent shifts are not truly necessary. Second-order selection can
only take place while the modifier is competing with the wildtype; once one of these lineages fixes, future
changes in `(B |Æ6) can no longer contribute to the fixation probability. Our results above allow us to estimate
the size of this critical window. In particular, our heuristic analysis in SI Section 4.1.4 shows that the
benefits of an evolvability modifier accumulate over  ⇤

⇠max{G2</B0
1
, 1} mutational steps. This suggests

that changes to the DFE that occur outside this horizon will have a negligible impact on our results.
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We tested this prediction by considering a simple model where the modifier reverts to the wildtype DFE
after  mutational steps:

`<(B |Æ6) =

(
`<(B) if |Æ6 � Æ6< | <  ,
`(B) else.

(S236)

Simulations of this model show that our existing theory continues to provide a good approximation even
when  is as low as 2 or 3 (Fig. 4A), consistent with the moderate values of @ ⌘ G2/B1 that are attained
for many empirically relevant parameter values (42, 51). Similar results are also observed if the modifier
reverts to a dead-end rather than the wildtype (Fig. 4B), with differences arising only for the smallest values
of  . In both cases, we find that the evolvability benefits still confer exponentially large advantages over the
classical SSWM expectation (Fig. 4A), even when they last for just a single mutation ( = 1).

7.3 Global diminishing returns epistasis
Many evolving populations exhibit a form of diminishing returns epistasis, where the fitness benefits of new
mutations systematically decline with a lineage’s absolute fitness (9, 10, 44, 58, 69, 98). To understand how
this phenomenon might impact our results, we considered a simple model of global epistasis inspired by the
long-term evolution experiment in Fig. 1A (58), where the typical fitness benefits of new mutations decline
exponentially with the total fitness,

`(B |Æ6) = *1 · X(B � B̃14�- ( Æ6)/\ ) , (S237)

where \ controls the strength of the diminishing returns effect. In the simplest scenario, we can assume that
the modifier distribution exhibits a similar decline,

`<(B |Æ6) = *0

1
· X(B � B̃

0

1
4
�- ( Æ6)/\

) , (S238)

but with different values of *0

1
and B0

1
. This generalizes the simple toy model in Fig. 2 to allow for steadily

declining fitness effects.

Adiabatic approximation. The simplest behavior occurs when \ is sufficiently large. Suppose that the
modifier arises at time C0 when the mean fitness of the population is - (C0). If we could neglect the additional
deceleration that occurs over the lifetime of a single mutation, we could simply apply our existing results with
B1 = B̃14

�- (C0 )/\ and B0
1
= B̃

0

1
4
�- (C0 )/\ . We can use our heuristic picture in SI Section 4.1.4 to determine

when this “adiabatic approximation” will be valid. The fate of a mutation is determined over )2 ⇠ G2/E

generations, during which time the total fitness of the population increases by �- ⇠ G2. If \ � G2, then
diminishing returns epistasis will have a negligible effect over the lifetime of a single mutation, even if it had
a large effect in setting the initial scale of selection (- (C0) ¶ \). This provides a self-consistent justification
for our adiabatic approximation above.

This simple picture leads to novel predictions when combined with our existing results in Eqs. (3) and
(4). In particular, it suggests that a selection-strength modifier will become less strongly selected over time
as the population becomes better adapted, while the benefits of a mutator allele will remain roughly constant
over the same time window. Since G2 is roughly proportional to B1 (Eq. S50), we expect that \/G2 will grow
increasingly large at long times as B1 becomes progressively smaller (Fig. 5). This suggests that the adiabatic
approximation will often be useful for understanding the long-term dynamics of a population (69).
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Beyond the adiabatic approximation. The situation becomes more complicated when G2 is comparable
to \, since the fitness benefits of new mutations will now decline within the scale of the population fitness
distribution. The dynamics in this regime are poorly understood even in the absence of second-order selection
(69). However, we can still account for these effects in a crude way by leveraging our heuristic picture in
SI Section 4.1.4, and focusing on the leading-order corrections when G2/\ is small but finite. We briefly
review the results for our original model below, and then show how they can be extended to calculate the
leading-order corrections from diminishing returns epistasis.

Recall that for small changes in the selection coefficient (B
0

1
� B1 ⌧ B

0

1
), successful modifiers will

typically arise in the high-fitness nose of the population (G ⇡ G2) and acquire G2/B1 mutations before reaching
appreciable frequencies (SI Section 4.1.4). In each of these steps ( 9 = 1, . . . , G2/B1), a selection-strength
modifier will grow for gest ⇡ B1/E generations while the next nose establishes. During this establishment
time, the modifier will produce ⇠ exp

⇥
B1

E
· 9 (B

0

1
� B1)

⇤
more mutations than a wildtype individual with the

same fitness, leading to the scaling

log ?̃fix ⇠
B1

2E
·
G2

B1

✓
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B1

� 1

◆ �
B
0

1
� B1

�
. (S239)

This picture becomes more complicated with diminishing returns epistasis since the wildtype and modifier
selection coefficients will decline with each subsequent mutation,

B
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1, 9
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9�1
8=1 B

0
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, (S240a)

B1, 9 ⌘ B1 (C0)4
�
Õ

9�1
8=1 B1,8/\ , (S240b)

where B0
1
(C0) and B1 (C0) denote the effective selection coefficients at the time that the modifier arises. As a

result, the modifier’s growth advantage, and the time it spends growing, will also vary with each mutation.
We can straightforwardly extend our heuristic prediction to account for these differences,

log ?̃fix ⇠
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B
1

�1’
8=1

8’
9=1

gest, 9 · B1, 9 ·

 
B
0

1, 9

B1, 9

� 1

!
, (S241)

where gest, 9 denotes the establishment time of the 9 th mutational step. These establishment times will emerge
from the non-equilibrium dynamics imposed by diminishing returns epistasis, including the declining rate
of fitness increase and width of the fitness distribution. While these dynamics remain poorly characterized
even in the absence of second order selection, we find that we can obtain accurate predictions by assuming
that the product gest, 9 · B1, 9 remains approximately constant during the lifetime of the modifier:

gest, 9 · B1, 9 ⇡ gest(C0) · B1 (C0) . (S242)

This assumption is motivated by the logarithmic dependence of gest · B1 on B1 in the absence of diminishing
returns epistasis (51; Eq. S50), which suggests that treating it as constant over fixation timescales will often
be a good approximation. With this assumption, Eq. (S241) reduces to the simpler form

log ?̃fix ⇠

G2

B
1

�1’
8=1

8’
9=1

gest(C0) · B1 (C0) ·

 
B
0

1, 9

B1, 9

� 1

!
. (S243)

Under the model in Eq. (S240), the diminishing returns effects on B0
1, 9

and B1, 9 exactly cancel each other, so
that we end up with the same adiabatic approximation above. This suggests that the next-order corrections
remain small when the modifier and wildtype follow similar diminishing returns schedules.
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We can also consider modifiers that alter the form of the diminishing returns epistasis itself. The simplest
example is one that changes the diminshing returns parameter \ to a new value \< once the modifier mutation
arises:

`<(B |Æ6) = *0

1
· X

⇣
B � B̃

0

1
4
�- ( Æ6< )/\� [- ( Æ6)�- ( Æ6< ) ]/\<

⌘
, (S244)

where Æ6< denotes the founding genotype of the modifier lineage. The difference between \ and \< is
invisible in the adiabatic approximation, but the next order corrections can be obtained from Eq. (S243), by
substituting

B
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1, 9
⌘ B

0

1
(C0)4
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Õ
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0
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, (S245a)

B1, 9 ⌘ B1 (C0)4
�
Õ

9�1
8=1 B1,8/\ . (S245b)

The diminishing returns contributions no longer cancel, leading to modest corrections to our existing theory
(blue lines, Fig. 5D). In particular, when \< � \, these diminishing returns modifiers can be positively
selected even when their initial DFEs are the same [B0

1
(C0) = B1 (C0)], since the modifier experiences fewer

diminishing returns effects at later times. These differences disappear once B0
1
(C0) is sufficiently large that

we enter the quasi-sweeps regime. In this case, we have seen that the success of the modifier is driven by its
ability to acquire its first additional mutation (SI Section 4.2.3), where the new value of \< has not yet taken
effect. These extensions of our heuristic analysis suggest that the simple model we have studied in this work
may be a powerful tool to understand selection for evolvability on more general fitness landscapes.

8 Numerical Methods

8.1 Theoretical predictions
The theory curves in each of the figures were generated using the following procedures.

Figure 2. To generate the theoretical predictions in Fig. 2, we first solved for G2< numerically as a function
of B0

1
,*0

1
, and E. We found that numerical accuracy was improved by using a modified version of Eqs. (S57)

and (S119),

1 =
*

0

1

B
0

1

"
4

G2<B
0

1

E
�

B
02
1

2E +

p
2cB02

1

G2<

p
E

4

G
2
2<

2E �
✓
B
0

1
� G2<
p
E

◆#
, (S246)

which has the same asymptotic behavior, but smoothly captures the transition between the multiple-mutations
(G2< � B

0

1
�

p
E) and quasi-sweeps regimes (B0

1
� G2< �

p
E). Numerical solutions to Eq. (S246) were

obtained using the fsolve function from the SciPy library (115), with the measured value of E obtained
from our forward-time simulations. We used the same procedure to solve for the wildtype interference
threshold G2 using the analogous version of Eq. (S246). If G2< > B

0

1
, we estimated the fixation probability

of the modifier using the multiple-mutations expression in Eq. (S85), while the quasi-sweeps prediction in
Eq. (S136) was used for G2< < B

0

1
. We used this procedure to generate all of the theory lines in panels A-C.

The boundary for the gray region in Fig. 2D was obtained by identifying the values of *0

1
and B

0

1

that minimize the true fixation probability ?̃fix((*1, B1) � (*
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1
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0

1
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1
). Using the leading-order approximations in Eqs. (S89), (S90), and S91, the fixation

probability of the compound modifier can be approximated as
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which eliminates the explicit dependence on *0

1
. Minimizing this function with respect to B0

1
yields an

analytical approximation for the boundary,
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which was used to define the gray region in Fig. 2D.

Figure 3. The theoretical predictions for Fig. 3 were obtained using a similar procedure as in Fig. 2. For
a modifier with a direct cost (B< < 0; Fig. 3A,C), we used the multiple-mutations expression in Eq. (S100)
if G2< > B

0

1
, and the quasi-sweeps expression in Eq. (S140) if G2< < B

0

1
; the integrals in Eq. (S140) were

computed numerically using the quad function from the SciPy library (115). For a modifier with a direct
benefit (B< > 0; Fig. 3B,C), we used the corresponding predictions in Eq. (S98) when G2< < G

⇤, or the
dead-end predictions in Eq. (S116) otherwise, with G⇤ defined by Eq. (S112).

The transition line in Fig. 3C was obtained by solving for the critical value of B< that satisfies

?̃fix(`(B) � `<(B), B<) = 1 . (S249)

The theoretical line was obtained by numerically solving Eq. (S249) using the fixation probability predictions
described above. The simulated values were calculated by linearly interpolating the observed fixation
probabilities using the polyfit package in the Numpy library.

Figure 4. Predictions for the continuous distributions of fitness effects in Fig. 4 were obtained using the
single-s mapping described in SI Section 5. We first calculated the value of G2 by numerically solving the
wildtype version of Eq. (S246), with the effective parameters B1 and*1 defined by Eqs. (S152) and (S155).
Using these estimates, we next checked whether the modifier was in the perturbative regime by numerically
solving for XG2 using Eq. (S169). If XG2 < E/B1, we used the corresponding predictions from the perturbative
regime in Eq. (S175), with B0

1
⇡ B1. If XG2 > E/B1, we turned to the corresponding predictions from the

modifier-dominated regime in SI Sections 5.3 and 5.4.
To do so, we numerically solved for G2< using Eq. (S246) with B0

1
and *0

1
defined by Eqs. (S177) and

(S180). For the bimodal distributions in Fig. 4, the solutions to Eqs. (S177) and (S180) can be expressed as
a piecewise function,
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(S250)

where B`
1
(G2<) and *`

1
(G2<) refer to the effective parameters of the wildtype distribution, but evaluated at

G2< rather than G2. The fixation probability of the modifier was then estimated as

?̃fix(`(B) � `<(B), B<) ⇡ ?̃fix((*1, B1) � (*
0

1
, B

0

1
), B<) , (S251)

where the right hand side was calculated using the methods described for Figs. 2 and 3 above.
To capture the transition region between the perturbative- and modifier-dominated regimes, we continued

to use our perturbative approximation if the modifier-dominated estimate of |G2< � G2 | was less than the
perturbative calculation of |XG2 |. This convention ensures that our theoretical predictions are continuous at
the border between the two regimes.
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Figure 5. The theoretical predictions for Fig. 5C were obtained using Eq. (S100). The theoretical predic-
tions for Fig. 5D were obtained using the same procedure in Fig. 2 for a beneficial modifier with no direct
cost or benefit.

Extended Data Fig. 3. The theoretical predictions for Fig. 3B,C were obtained using Eq. (S74). The
theoretical predictions for Fig. 3D,E were obtained using the procedure used in Fig. 2 for a beneficial
modifier without a short term cost.

Extended Data Fig. 4. The theoretical predictions for Fig. 4 were obtained using the same procedure in
Fig. 2 for a beneficial modifier with no direct cost or benefit.

Extended Data Fig. 5. The forward-time simulations with diminishing returns epistasis in Fig. 5 followed
a similar procedure to that outlined in Methods. To enhance reproducibility, the simulations were allowed
to “burn-in” for �C = 2 · 104 generations before initiating diminishing returns. After this burn-in period,
diminishing returns was initiated and the mean fitness and typical selection coefficient, B1 (-), were recorded
every 50 generations. The simulation results in Fig. 5A,B are the mean and average of 10 simulations.

After the typical selection coefficient in the population had declined to the chosen value B1 (-) = 2.5·10�2,
the fitness and abundance of each lineage was saved. Modifier lineages were then introduced at a constant
rate for C* = 1000 generations. This value was capped to ensure a successful modifier arose in a population
with the chosen selection coefficient. To generate the comparisons of the neutral modifier and background
selection coefficients in Fig. 5C, B1 (- + G2) was obtained using an estimate of G2 from the model without
diminishing returns. This estimate was obtained using a similar procedure to that in Fig. 2 with E numerically
evaluated in a population with a constant selection coefficient, B1 = 2.5 · 10�2. The results in Fig. 5C were
then obtained using Eq. (S240).

After C* = 1000,*< was set to zero and the simulation continued until a modifier took over or all modifier
lineages where purged. If a modifier did not take over, the population reverted back to the saved lineage
distribution and this process was repeated = times until modifier took over. This allowed us to apply the
same procedure in Methods to calculate the fixation probability of a modifier with ) = = · C* . The theoretical
predictions for the \ = \< line were obtained using the same procedure in Fig. 2 for a selection strength
modifier with B1 = B̃1 and B0

1
= B̃10. The theoretical predictions for the \ = 1 line were obtained using min{

Eq. (S243), Eq. (S136) }, where B1,0 · gest,0 was calculated from the relation B1,0 · gest,0 = B2
1,0/E. In this case,

E was evaluated numerically in Wright Fisher simulations without diminishing returns for B1 = B1 (- + G2).

8.2 Empirical example from Ref. (8)
The relative fitness estimates for the modifier example in Fig. 1A were obtained from Ref. (8). This study
examined two strains of E. coli that were isolated from generation 500 of Lenski’s long-term evolution
experiment (79). Relative fitnesses of the two strains at the first timepoint in Fig. 1A were obtained from
head-to-head competitions under the same conditions as the original experiment. Ref. (8) reported these
relative fitness values using the metric,

, ⌘

log
⇣
#2 (�C ) ·2�C

#2 (0)

⌘

log
⇣
#1 (�C ) ·2�C
#1 (0)

⌘ , (S252)

where #8 (0) is the number of colonies of strain 8 observed at the beginning of the competition, #8 (�C) is the
(adjusted) number of colonies observed at the end of the competition, and �C is the length of the competition
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in generations. To enable more direct comparisons with our theory, we converted these , estimates to the
relative (log) fitness,

�- ⌘
1

�C
log


52(�C)
51(�C)

·
51(0)

52(0)

�
, (S253)

where 58 (C) is the relative frequency of strain 8 at generation C.
To perform this conversion, we assumed that the colony counts in Ref. (8) were adjusted so that a

similar overall number of colonies were measured at both timepoints. This implies that #8 (�C)/#8 (0) =
58 (�C)/ 58 (0). If we also assume that the competition experiments were started at a 1:1 ratio, so that
51(0) ⇡ 52(0) ⇡ 1/2, we can obtain a relation between the �- and, metrics,

, = 1 +
�- · �C

log
⇣

2�C+1

1+4�-·�C

⌘ , (S254)

which depends on the duration �C. We used this expression to convert the average and 95% confidence
intervals reported in Ref. (8) into the relative fitness values in Fig. 1A:

Initial timepoint. The fitness measurements for the initial timepoint were conducted over �C = 47 gener-
ations, and yielded a fitness disadvantage of ,=0.937 (0.934,0.941) [mean and 95% confidence intervals
from replicate competition assays]. Numerical conversion using Eq. (S254) yielded a log fitness difference
of �-= -4.4% (-4.17%,-4.66%).

Second timepoint. The fitness measurements at the second timepoint were obtained after evolving each
isolate for an additional 883 generations in 20 independent replay experiments. Pooled fitness measurements
of the evolved populations were performed over �C = 6.6 generations, and yielded a fitness benefit of,=1.02
(1.003, 1.039). Numerical conversion using Eq. (S254) yielded a log fitness difference of �-=1.4% (0.2%,
2.6%).
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