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Evolution of evolvability in rapidly adapting 
populations

James T. Ferrare1 & Benjamin H. Good    2,3,4 

Mutations can alter the short-term fitness of an organism, as well as the 
rates and benefits of future mutations. While numerous examples of these 
evolvability modifiers have been observed in rapidly adapting microbial 
populations, existing theory struggles to predict when they will be favoured 
by natural selection. Here we develop a mathematical framework for 
predicting the fates of genetic variants that modify the rates and benefits 
of future mutations in linked genomic regions. We derive analytical 
expressions showing how the fixation probabilities of these variants depend 
on the size of the population and the diversity of competing mutations. We 
find that competition between linked mutations can dramatically enhance 
selection for modifiers that increase the benefits of future mutations, even 
when they impose a strong direct cost on fitness. However, we also find that 
modest direct benefits can be sufficient to drive evolutionary dead ends to 
fixation. Our results suggest that subtle differences in evolvability could play 
an important role in shaping the long-term success of genetic variants in 
rapidly evolving microbial populations.

The benefits of new mutations can manifest over multiple timescales. 
Some mutations alter the short-term fitness of an organism, while oth-
ers can also affect the rates and fitness benefits of future mutations. 
Examples are common in the microbial world. Mutations in DNA repair 
genes can generate mutator strains with dramatically elevated muta-
tion rates1–3. These variants also alter the molecular spectrum of new 
mutations, which can shift the relative probabilities of adaptive muta-
tions in addition to their overall rates4–6. Other classes of mutations can 
open or close adaptive pathways through epistatic interactions with 
other genes7–12. Striking examples of these ‘evolvability modifiers’ have 
been observed in laboratory evolution experiments8,10,11,13 (Fig. 1a), and 
they are thought to play a critical role in cancer14–16 and the evolution 
of antibiotic resistance17–19. But despite their potential importance, it is 
difficult to predict when these long-term evolutionary benefits should 
be favoured by natural selection.

Classical arguments from modifier theory suggest that in a con-
stant environment, asexual populations will select for mutations that 
maximize their long-term mean fitness20–22 (Supplementary Section 1).  
This simple result applies for infinite populations near mutation– 
selection equilibrium. Both conditions are frequently violated in 

adapting populations, as a beneficial variant can fix before its long-term 
costs or benefits are fully realized. This greediness creates an inherent 
tension between short-term and long-term fitness gains23–25.

While some of these trade-offs can be understood in simple cases 
where mutations accumulate one by one22,26–30 (Supplementary Sec-
tion 2), most microbial populations reside in a qualitatively different 
regime. In many cases of interest, from laboratory evolution experi-
ments10,31–33 to natural populations of viruses34–37, bacteria38–40 and 
certain cancers14,15, multiple beneficial mutations can arise and com-
pete within the population at the same time. The competition between 
these linked variants (‘clonal interference’41) ensures that a successful 
lineage must often generate multiple additional mutations to fix, which 
amplifies the indirect selection on their mutational neighbourhood. 
However, while recent work has started to explore these effects for 
mutation-rate modifiers alone26, we currently lack an analytical frame-
work for understanding more general differences in evolvability in the 
high-diversity regimes most relevant for microbes.

Our limited understanding of these dynamics leaves many 
basic questions unresolved: How does natural selection balance 
the short-term costs or benefits of a mutation with its longer-term 
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role. The outcome of this competition can be described by the fixation 
probability, pfix(μ(s) → μm(s)), which provides a quantitative measure of 
the mutant’s long-term reproductive value46.

In large populations, the fate of a modifier mutation will strongly 
depend on its initial genetic background. While this distribution 
is complicated at the genetic level, previous work has shown that 
progress can be made by grouping individuals by their relative fit-
ness and modelling the resulting dynamics in fitness space42,43,47. The 
distribution of fitnesses in the background population will approach 
a steady-state shape f(x) that increases in fitness at rate v ≡ v(μ(s), N) 
(Fig. 1c). This distribution has a characteristic width, xc, which also 
depends on the DFE and population size, and roughly coincides with 
the location of the fittest individuals in the population. A new modi-
fier mutation will arise on a genetic background with a relative fitness 
drawn from f(x) and will then compete with the wildtype population 
while acquiring further mutations from the modified DFE μm(s) (Fig. 1c, 
right). The outcome of this competition can be summarized by the 
conditional fixation probability wm(x) ≡ pfix(μ(s) → μm(s)∣x), which 
depends on the mutant’s initial relative fitness x (Fig. 1c, left). Build-
ing on previous work26, we show that this conditional fixation prob-
ability can often be approximated by the solution to the branching  
process recursion,

0 ≈ x ×wm(x)⏟⎵⎵⏟⎵⎵⏟
selection

+∫ μm(s) [wm(x + s) −wm(x)]⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
furthermutations

ds

− v(μ(s),N) × ∂xwm(x)⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
adaptationof thewildtype

− 1
2
×wm(x)2⏟⎵⎵⏟⎵⎵⏟

genetic drift

,
(1)

which represents a balance between (1) the growth of the lineage due to 
selection, (2) the production of further mutations, (3) the adaptation 
of the wildtype population and (4) the stochastic effects of genetic 
drift (Methods). The overall fixation probability of the modifier can 
then be obtained by averaging over the relative fitness of its initial 
genetic background,

pfix(μ(s) → μm(s), sm) = ∫ wm(x + sm) × f(x)dx , (2)

where we have also allowed the modifier to have a direct cost 
or benefit sm. Together, equations (1) and (2) provide a quantita-
tive framework for understanding the trade-offs between direct  
(or ‘first-order’) selection on an immediate fitness change and 

impact on the fitness landscape? Which future mutations matter 
most for determining a lineage’s long-term evolutionary fate? And 
how do the answers to these questions depend on extrinsic factors 
such as the size of the population or the diversity of competing 
mutations? In this Article, we address these questions by developing 
a population genetic theory of indirect (or ‘second-order’) selec-
tion that explicitly accounts for interference among competing 
beneficial mutations.

Results
Modelling indirect selection in rapidly adapting populations
While evolvability can be defined in many ways23–25, we focus on a 
simple model of indirect selection that is motivated by empirical 
examples such as Fig. 1a (Methods). We consider an asexual popula-
tion of N individuals that can acquire beneficial mutations at a large 
number of linked genetic loci. In a constant environment, the muta-
tions accessible to each genotype ⃗g  can be summarized by their  
distribution of fitness effects (DFE), denoted by μ(s| ⃗g )ds, which repre
sents the per generation rate of producing mutations with fitness 
effects s ± ds/2 (Fig. 1b and Extended Data Table 1). We will initially 
assume that the beneficial sites are sufficiently numerous and epista-
sis sufficiently weak that the DFE remains approximately constant 
over the relevant timescales (which we determine self-consistently 
below). This implies that the rate of adaptation of the population will 
approach a steady-state value v(μ(s), N) that depends on the size of 
the population and the shape of the DFE42,43. Given these assumptions, 
the simplest possible evolvability modifier is a mutant that shifts the 
DFE to a new shape, μ(s) → μm(s), which is maintained for several addi-
tional substitutions (Fig. 1b). This minimal model can be viewed as 
the lowest-order term in a more general expansion in the genotype 
dependence of μ(s| ⃗g ) (Extended Data Fig. 1 and Methods). It general-
izes the notion of a mutator allele to capture more subtle changes in 
evolvability while bypassing the enormous complexity of the under-
lying fitness landscape.

If the modifier takes over the population, the rate of adaptation 
will shift to a new value vm ≡ v(μm(s), N) that reflects its altered sup-
ply of mutations (Fig. 1a). Following previous work8,44,45, we define an 
evolvability-enhancing mutation to be one that increases vm, while an 
evolvability-decreasing mutation has the opposite effect. However, 
natural selection does not act on the long-term rate of adaptation 
directly: before a modifier can reach these high frequencies, it must 
initially grow from a single founding individual, where stochastic fluc-
tuations and competition with other lineages both play an important 
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Fig. 1 | Modelling indirect selection on evolvability in rapidly adapting 
asexual populations. a, An empirical example of an evolvability modifier from 
ref. 8. Two E. coli strains isolated from a long-term evolution experiment78 had an 
initial fitness difference of ~4% (Methods). The less-fit strain showed a higher rate 
of adaptation in replay experiments, which allowed it to consistently overcome 
its initial disadvantage after ~900 generations of evolution. Fitness differences 
denote mean ± s.e.m. from 20 independent replays. b, These long-term benefits 
can be modelled by the accumulation of beneficial mutations at a large number 
of linked genomic loci. The fitness benefits of the mutations are summarized by 

their distribution μ(s)ds, which denotes the total rate of producing mutations 
with fitness effects s ± ds/2. An evolvability modifier changes this distribution 
to a new value, μm(s). c, A modifier mutation (A) with a direct cost or benefit (sm) 
arises on a genetic background from the wildtype fitness distribution, f(x), which 
has a maximum relative fitness xc (left). The modifier lineage competes with the 
wildtype population as they both acquire further mutations (B and C; right). The 
outcome of this competition is described by the conditional fixation probability 
wm(x + sm), which shows a sharp transition at a critical initial fitness xcm ≠ xc (left).
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indirect (or ‘second-order’) selection on the rates and benefits of 
future mutations.

The fixation probability of a neutral variant [μm(s) = μ(s), sm = 0] is 
always equal to 1/N (ref. 48; Supplementary Section 3). This provides 
a natural scale for interpreting the fixation probability in equation (2). 
Modifiers with pfix ≫ 1/N are strongly favoured by natural selection, 
while those with pfix ≪ 1/N are effectively purged. For this reason, it  
will be convenient to examine the scaled fixation probability, 
̃pfix(μ(s) → μm(s), sm) ≡ N × pfix(μ(s) → μm(s), sm) , so that the sign of 

log ̃pfix coincides with the net ‘direction’ of natural selection49.

Selection for evolvability in a simple fitness landscape
To understand the indirect selection pressures encoded in equations (1)  
and (2), we start by considering a simple model for the DFE, where 
deleterious mutations are neglected and all new mutations confer the 
same characteristic fitness benefit sb (we eventually relax both assump-
tions below). If Ub denotes the total rate at which these mutations occur, 
then an evolvability modifier will change either the selection strength 
(sb → s′b), the mutation rate (Ub → U′

b) or some combination of the two 
parameters (Fig. 2a). This simplified model allows us to obtain an ana-
lytical solution for the fixation probability that is valid for empirically 
relevant scenarios where sb ≫ Ub ≫ 1/N (Methods). It will be convenient 
to express these results in terms of the key fitness scales v and xc in the 
wildtype population (Fig. 1c and Methods), which satisfy xc ≫ sb ≫ √v 
in the parameter ranges above.

To tease apart the contributions of indirect selection, we begin 
with the simplest case where there are no direct costs or benefits 
(sm = 0), and consider mutation-rate and selection-strength changes 
independently (Fig. 2b,c). For a pure selection-strength modifier 
(sb → s′b), we find that the fixation probability initially increases sharply 
with the new selection strength,

log ̃pfix (sb → s′b) ≈ [1 − ( sb
s′b
)
2

] log (√(Nsb) (NUb)) , (3)

before saturating to a linear dependence for larger values of s′b (Fig. 2b). 
(Note: to streamline notation, we have omitted the arguments of the 
fixation probability that are held constant in equation (3).) The rapid 
increase in Fig. 2b is qualitatively different than that observed for 
mutation-rate modifiers26,

log ̃pfix (Ub → U′
b) ≈ (xc

sb
) log (

U′
b

Ub
) , (4)

whose indirect benefits increase more slowly with the fold change in 
the mutation rate (Fig. 2c). In both cases, the fixation probabilities are 
orders of magnitude larger than the proportional scaling expected 
when mutations accumulate via discrete selective sweeps (Fig. 2b,c 
and Supplementary Section 2). This gap grows increasingly large as 
the supply of beneficial mutations (NUb) increases, showing that the 
competition between linked mutations can dramatically enhance selec-
tion on heritable differences in evolvability.

The origin of this behaviour can be heuristically explained using 
the key fitness scales in Fig. 1c. For small changes in the selection 
strength, successful modifiers typically arise in the high-fitness ‘nose’ of  
the population (x ≈ xc) and must acquire ≅xc/sb additional mutations 
before they outcompete their rivals in the nose. In each step j, a 
selection-strength modifier produces ≈ exp [τ × j(s′b − sb)]  more  
mutations than a wildtype individual in the time that it takes for the 
nose to advance by one mutation (τ ≈ sb/v). Multiplying these contribu-
tions together leads to the exponential scaling observed in equation (3). 
The linear saturation at larger values of s′b occurs when a single addi-
tional mutation is sufficient to ensure fixation. However, unlike in small 
populations, these successful modifiers still arise on anomalously fit 
genetic backgrounds (x ≈ √xcsb), so they are able to hitchhike to higher 
initial frequencies and increase their overall probability of producing 
an additional mutation. Both examples illustrate that indirect selection 
acts over a limited horizon, which will be important when considering 
extensions to more complex fitness landscapes below.

The strength of indirect selection can also be quantified by com-
paring our expressions with the corresponding fixation probability of 
a ‘first-order’ mutation,

log ̃pfix(s) ≈
xcs
v
, (5)

which has been studied in previous work42,43,50 (Methods). Comparing 
this expression with equation (3) shows that even fractional changes 
in the selection strength (Δsb/sb ≈ √sb/xc ≲ 1) can generate fixation 
probabilities as large as a typical beneficial mutation (s ≈ sb). This con-
trasts with the behaviour observed for mutation-rate modifiers in 
equation (4), where the mutation rate must increase by several orders 
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Fig. 2 | Interference between linked mutations enhances indirect selection 
for evolvability. a, A simplified model for the DFE in Fig. 1b, where all mutations 
confer the same characteristic fitness benefit. An evolvability modifier will 
change the overall mutation rate (Ub → U′

b), the overall selection strength 
(sb → s′b) or both. b,c, The fixation probability (scaled by the neutral expectation, 
1/N) for a selection-strength modifier, ̃pfix(sb → s′b) (b), or a mutation-rate 
modifier, ̃pfix(U′

b → Ub) (c). Symbols denote the results of forward-time 
simulations (Methods) for sb = 10−2, Ub = 10−5 and N = 107–109. Solid lines denote 
our theoretical predictions (Supplementary Section 8), while the dashed lines 
denote the null expectation in the absence of clonal interference (Supplementary 

Section 2). d, Fixation probability of a compound modifier, 
̃pfix ((Ub, sb) → (U′

b, s
′
b)), compared with an additive null model, 

̃pfix(Ub → U′
b) × ̃pfix(sb → s′b). Symbols denote the results of forward-time 

simulations for sb = 10−2, Ub = 10−5 and N = 108; the y coordinates are obtained from 
simulations, while the x coordinates are obtained from the theoretical 
predictions in b and c. Solid lines denote our theoretical predictions, which 
deviate substantially from the additive expectation (dashed lines). The grey 
region indicates forbidden combinations that cannot arise in our theory 
(Supplementary Section 8).
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of magnitude [log(ΔUb/Ub) ≈ s2b/v ≫ 1 ] to achieve the same effect.  
This shows that larger populations can more efficiently select on 
changes to the fitness benefits of future mutations, compared with the 
overall rate at which they occur.

The fixation probability of a modifier that changes the mutation 
rate and selection strength at the same time can be understood using 
these basic building blocks. We find that the dominant contributions 
can be expressed as a linear combination of equations (3) and (4),

log ̃pfix ((Ub, sb) → (U′
b
, s′

b
)) ≈ log ̃pfix (sb → s′

b
)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

change in selection strength

+α × log ̃pfix (Ub → U′
b
)⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

change inmutation rate

,
(6a)

where the weighting factor α is given by

α ≈ max {(sb/s′b)
2
, sb/xc} . (6b)

The presence of this additional weighting factor implies that 
mutation-rate and selection-strength modifiers do not additively 
combine. Instead, equation (6) shows that increases in the average 
fitness benefit (s′b > sb)  will temper selection on the mutation rate 
(α < 1), while decreases in s′b will amplify it (α > 1). This non-additivity 
arises because larger selection-strength modifiers lower the number 
of mutations required to fix by a factor of (s′b/sb)

2, which diminishes 
the compounding effects of the altered mutation rate. These differ-
ences can be large and can alter the overall sign of selection on the 
modifier (Fig. 2d). Moreover, as the individual terms in equation (6) 
depend on the underlying parameters in different ways, the sign of 
selection can also vary as a function of the population size and the 
basal mutation rate26,28. Together, these examples illustrate how 
selection-strength modifiers can lead to qualitatively different behav-
iour than expected for mutation-rate changes alone and that even 
modest shifts in sb can frequently overpower order-of-magnitude 
differences in Ub.

Trade-offs between direct and indirect selection
We are now in a position to understand how natural selection balances 
the short-term costs and benefits of a mutation with its longer-term 
impact on evolvability. Across a broad range of parameters, we find that 
the fixation probability can be naturally decomposed into contribu-
tions from direct and indirect selection,

log ̃pfix ((Ub, sb) → (U′
b
, s′

b
) , sm) ≈ log ̃pfix ((Ub, sb) → (U′

b
, s′

b
))⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟

indirect selection

+ γ × log ̃pfix(sm)⏟⎵⎵⏟⎵⎵⏟
direct selection

,

(7a)

where ̃pfix(sm) and ̃pfix ((Ub, sb) → (U′
b, s

′
b)) are given by equations (5) 

and (6) above, and γ is an additional weighting factor satisfying

γ ≈ (sb/s′b) [1 − (xcsb/v)
−1 log (U′

b/Ub)] . (7b)

As above, the presence of this additional weighting factor implies that 
differences in the DFE will generally modulate the effects of first-order 
selection on fitness. The direction of this effect depends on whether γ 
is greater or smaller than 1.

We find that modifiers that would be strongly favoured in the 
absence of a direct cost or benefit [ ̃pfix ((Ub, sb) → (U′

b, s
′
b)) ≫ 1] lead 

to a weighting factor γ ≲ 1, which reduces the relative contribution from 
̃pfix(sm). As a result, these evolvability-enhancing mutations can remain 

positively selected even when they impose a large direct cost on fitness 
(for example, larger than the size of a typical driver mutation; Fig. 3a,c). 
This contrasts with the classical behaviour observed for discrete selec-
tive sweeps, where direct costs larger than a typical driver mutation 
will generally prevent a modifier from fixing (Supplementary  
Section 2). These results imply that larger populations are better able 
to sacrifice short-term fitness for longer-term gains in evolvability.

The opposite behaviour occurs when short-term fitness  
benefits are linked to long-term reductions in evolvability. In this 
case, modifiers that would be strongly disfavoured on their own 
[ ̃pfix ((Ub, sb) → (U′

b, s
′
b)) ≪ 1] will generally amplify the relative con-

tribution of a direct fitness benefit (Fig. 3b,c). A striking example of 
this effect occurs in the extreme case of an evolutionary ‘dead end’, 
where further beneficial mutations are not available. Generalizing 
equation (1) to account for this case, we find that direct benefits as 
small as ≅0.4xc are sufficient to cause an evolutionary dead end to be 
positively selected ( ̃pfix ≫ 1), even though they drive the long-term 
rate of adaptation to 0 when they fix (Fig. 3b). This critical direct 
benefit is often larger than a single driver mutation (sb), but it is also 
smaller than the total fitness variation maintained within the  
population (xc) and only weakly increases with NUb. These examples 
illustrate how the evolutionary foresight of natural selection can be 
highly asymmetric: larger populations can still greedily select for 
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theoretical predictions (Supplementary Section 8), which exhibit large 
deviations from the additive expectation (γ = 1, dashed line).
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mutations that lower their rate of adaptation, even while they are 
better able to endure short-term fitness costs to realize long-term 
evolutionary benefits.

Continuous distributions of fitness effects
We have so far focused on a simplified model of the fitness landscape, 
where all new mutations confer the same characteristic fitness benefit. 
However, most organisms produce mutations with a range of different 
fitness effects. A more realistic evolvability modifier will therefore cor-
respond to a continuous perturbation of the DFE, δμ(s) = μm(s) − μ(s), 
representing the addition or subtraction of mutations with a range of 
costs or benefits (Fig. 4a). How does indirect selection on these more 
general differences in the DFE relate to the idealized selection-strength 
and mutation-rate axes above?

Focusing first on beneficial mutations, we can extend our solution 
of equation (1) to a large class of wildtype DFEs that have been studied in 
previous work. In these settings, the distribution of fixed mutations is 
strongly peaked around a characteristic fitness benefit sb(μ(s), N) (with 
a corresponding mutation rate Ub(μ(s), N)), even when the underlying 
DFE has a broader shape42,43,51,52 (Fig. 4a and Supplementary Section 5.1).  
By solving equation (1) in this limit (Methods), we find that indirect 
selection on a general shift μ(s) → μ(s) + δμ(s) strongly depends on 
how the perturbation δμ(s) relates to the wildtype values of Ub and sb.

For small changes to the DFE, the fixation probability of the modi-
fier initially grows as

log ̃pfix(μ(s) → μ(s) + δμ(s)) ≈ xc
sb

×∫
xc

0

δμ(s)
Ub

e
xc(s−sb)

v ds, (8)

where v and xc again denote the rate of adaptation and nose of the 
wildtype population (Fig. 1c), which can be calculated from the values 
of N, Ub and sb (Methods). This expression shows how natural selection 
weighs the addition or subtraction of mutations with different fitness 
benefits. The critical fitness scale is set by the size of a fixed mutation: 
when s > sb, even small increases in the net mutation rate 
(∫∞

sb
δμ(s)ds ≪ Ub ) can generate large changes in the fixation prob

ability (Fig. 4c). By contrast, fitness benefits smaller than sb require 
many multiples of Ub to have the same effect (Fig. 4c). Moreover, as the 
values of sb and Ub both emerge from the competition between linked 
mutations, the location of this transition can vary with the size of the 
population and the shape of the wildtype DFE (Fig. 4d).

For larger changes to the DFE, the mutations that fix in a successful 
modifier lineage will tend to be concentrated around their own char-
acteristic benefit s′b ≠ sb. We find that this new fitness scale is deter-
mined by a generalization of the integral in equation (8) and depends 
on the shape of δμ(s) as well as the wildtype parameters sb and Ub (Meth-
ods). In this case, the fate of the modifier can be predicted from our 
single-s theory in equation (6),

log ̃pfix(μ(s) → μ(s) + δμ(s)) ≈ log ̃pfix ((Ub, sb) → (U′
b, s

′
b)) , (9)

where U′
b denotes the corresponding mutation rate for mutations that 

are sufficiently close to s′b (Fig. 4c,d and Methods). Similar results also 
apply for modifiers with direct costs or benefits, allowing us to extend 
our results in Fig. 3 to these more general scenarios as well (Fig. 4e,f).

The equivalence principle in equation (9) shows that indirect selec-
tion on an arbitrary shift in the DFE can be understood as a combination 
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evolvability modifier shifts the DFE to a new shape μm(s) ≡ μ(s) + δμ(s) (right). The 
strength of indirect selection depends on how the perturbation δμ(s) compares 
to the size of a typical fixed mutation (left). b, Specific example in c–f. The 
wildtype DFE is a stretched exponential with shape parameter β, scale parameter 
s0 and overall mutation rate U0 (left). The modifier adds a localized perturbation, 
δμ(s) ≈ U1δ(s − s1) (right). c, Scaled fixation probability of the modifier in b for an 
exponential DFE (β = 1) for two different values of s1. Symbols denote the results 
of forward-time simulations for s0 = 10−2, U0 = 10−5 and N = 108, where the typical 

fixed mutation has sb ≈ 8.5 × s0 (Methods). Solid lines denote our theoretical 
predictions (Supplementary Section 8), while dashed lines indicate the null 
expectation in the absence of clonal interference. d, Fixation probability of 
the modifier for an exponential DFE (β = 1) and a distribution with a shorter tail 
(β = 10); blue and grey curves in the inset illustrate the differences between these 
background distributions. In both cases, s1 ≈ 0.03, while other parameters are the 
same as in c. e, Fixation probability of the modifier with a direct fitness cost. Base 
parameters are indicated by the stars in c and d. f, Analogous version of e for an 
evolutionary dead end (μ(s) → 0) with a direct fitness benefit.
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of the mutation-rate and selection-strength axes in Fig. 2. However, the 
relevant parameters in this mapping will not coincide with the nominal 
mean and height of the DFE. Instead, due to the exponential weighting of 
mutations with s ≳ sb, otherwise subtle additions to μ(s) can be strongly 
favoured by natural selection, even when they have a negligible impact 
on the overall mean or mutation rate (Fig. 4c–e). Conversely, large 
reductions in these global parameters will be nearly invisible to natural 
selection unless they also deplete mutations near sb. This sensitivity to 
local changes could help explain previous experimental observations in 
Escherichia coli (Fig. 1a), where the potentiation of just a few beneficial 
genes was sufficient to overcome a large direct fitness cost8.

Discussion
Our results provide a framework for understanding how natural selec-
tion balances the short-term costs and benefits of a new mutation 
with its longer-term impact on evolvability. We have shown that when 
beneficial mutations are common, the competition between linked 
mutations can dramatically enhance selection for subtle differences 
in the mutational neighbourhood, leading to large deviations from 
the linear scaling predicted by classical evolutionary models29. These 
results suggest that indirect selection could play a previously unappre-
ciated role in driving the success of genetic variants in large microbial 
populations, from laboratory evolution experiments8,10,13,33,53 to natural 
systems such as cancer14,15, influenza34 or SARS-CoV-237,54. This could 
have important consequences for evolutionary forecasting35,55–57, as 
it implies that the direct fitness effects of such variants might fail to 
explain their long-term evolutionary success.

Our theory indicates that it could be difficult to detect these 
evolvability differences using traditional metrics such as the rate of 
adaptation8,44,58 or the substitution rate53, as the associated changes in 
these observables are not always large (Supplementary Section 4.1.7).  
Previously documented cases such as Fig. 1a might therefore only 
represent a fraction of the selectable variation in evolvability. Our 
results suggest that future efforts could instead focus on mapping the 
aggregate changes to the DFE (Fig. 1b), for example, using barcoded 
lineage tracking9,59,60 or mutation trap experiments61. However, we have 
also shown that the important changes in this distribution will often 
occur in its high-fitness tail and are poorly captured by existing heu-
ristics such as the mean mutational effect (Fig. 5a–c; refs. 29,45). They 
can also depend on external factors such as the population size and the 

overall mutation rate. This suggests that the evolvability benefits of a 
mutation should not be viewed as an intrinsic property of the genotype 
but rather a collective effect that can vary across populations or within 
the same population over time. Our theory provides a framework for 
predicting where these evolutionarily important differences will occur.

While we have primarily focused on the supply of beneficial muta-
tions, our results can also be extended to account for changes  
in the supply of strongly deleterious mutations (for example, those 
that are rapidly purged by selection), which behave like an effective 
direct cost, seffm ≈ −∫−v/xc

−∞ δμ(s)ds (Fig. 5a–c, Extended Data Fig. 2 and  
Supplementary Section 6). This mapping to Fig. 3 reveals how adapting 
populations balance the trade-offs (or synergies) between robustness 
and evolvability62–64. On the one hand, it implies that more rapidly 
adapting populations will generally be more willing to sacrifice 
short-term robustness for longer-term gains in evolvability (Fig. 5a–c), 
particularly for the mutation rates that are common in many bacteria65. 
However, it also suggests that at higher mutation rates, large robust-
ness gains could still be preferred even if they eliminate all opportuni-
ties for future adaptation (Fig. 3b). These results shed light on when 
‘flatter’ or ‘steeper’ regions of the fitness landscape will be favoured by 
natural selection22,30,62,66,67.

Our minimal model also assumed that the indirect benefits of the 
modifier remain fixed as it competes for dominance in the population. In 
reality, epistatic interactions could cause these benefits to attenuate— 
or even reverse—as the modifier acquires further mutations. Our heu-
ristic analysis suggests that our current results will continue to hold as 
long as the effective parameters in equation (9) remain constant over a 
typical fixation time (roughly v/xc generations, or xc/sb additional muta-
tions). This timescale is often modest in practice (Methods), allowing 
our minimal model to capture a broader range of epistatic scenarios 
than its idealized nature might originally suggest (Fig. 5d, Extended 
Data Figs. 3 and 4 and Supplementary Section 7). Further extensions of 
this framework to allow for more rapidly varying distributions of fitness 
effects (‘macroscopic epistasis’68) could be useful for understanding 
how large populations navigate complex fitness landscapes69.

Finally, while we have focused on the asexual dynamics common 
in laboratory experiments8 and somatic evolution14,15, natural microbial 
populations often show some degree of recombination70. Widespread 
recombination will alter our predictions by decoupling the modifier 
locus from the future mutations that it produces24,71. Previous work 
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Fig. 5 | Incorporating deleterious mutations and modifiers with finite 
mutational horizons. a, Example of an evolvability-enhancing mutation 
(sb → s′b) that decreases mutational robustness by increasing the deleterious 
mutation rate (Ud → U′

d). b, As deleterious mutations outnumber beneficial 
variants by several orders of magnitude (Ud ≫ Ub), the change in the average 
fitness effect, ∫ s × δμ(s) ds, is dominated by the deleterious portion of the DFE.  
c, Scaled fixation probability of the modifier as a function of the new deleterious 
mutation rate U′

d. Symbols denote the results of forward-time simulations for 
sb = 4 × 10−2, Ub = 10−6, sd = 10−1, Ud = 4 × 10−4 and N = 108. Solid lines denote our 
theoretical predictions, where deleterious mutations behave like an effective 
direct cost seffm ≈ Ud − U′

d. This example illustrates that changes in the deleterious 

portion of the DFE have a minor impact on the fixation probability for many 
biologically relevant mutation rates (U′

d ≲ 10−3). d, Another generalization of 
Fig. 2b, where modifier individuals revert back to the wildtype DFE after K 
mutational steps (Supplementary Section 7.2). Symbols denote the results of 
forward-time simulations for N = 108, sb = 10−2 and Ub = 10−5, while the solid line 
denotes our theoretical predictions for the minimal modifier model in Fig. 1b. 
Consistent with our heuristic analysis, the minimal modifier model (K ≈ ∞) 
remains highly accurate even for moderate values of K (for example, 2–3)  
and for as little as a single mutation when s′b is large. In all cases, the fixation 
probabilities are much larger than expected in the absence of clonal interference 
(dashed lines).
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suggests that some of our results may still apply on short genomic 
distances that remain tightly linked over the characteristic fixation 

time (l ≈ 1
r
× v

xc
) (refs. 72–74). However, modifiers can also benefit from 

transient linkage to mutations outside these asexual linkage blocks75, 
and the fitness effects of the mutations could change when decoupled 
from the background that produced them69. Understanding the inter-
play between these forces—and how they generalize to fluctuating 
environments62,76—will be critical for understanding how indirect selec-
tion acts in other contexts.

Methods
Model and notation
Our basic model considers an asexual population of N ≫ 1 individuals 
whose genomes are composed of L ≫ 1 bi-allelic loci. The genotype of 
each individual is represented by a binary vector ⃗g ∈ {0, 1}L. We assume 
a constant environment, where the (log) fitness of each genotype is 
determined by an arbitrary function X( ⃗g )  (the ‘fitness landscape’). 
Mutations from genotype ⃗g  to ⃗g

′
 occur at a total rate M( ⃗g → ⃗g

′
)  per 

individual per generation (the ‘mutational network’).
Modifier mutations can be expressed in this framework by desig-

nating an arbitrary site m as the modifier locus and recalculating X( ⃗g )  
and M( ⃗g → ⃗g

′
)  for the modifier (gm = 1) and wildtype (gm = 0) alleles 

separately. This yields an analogous pair of functions Xm( ⃗g )  and 
Mm( ⃗g → ⃗g )  that represent the fitness landscape and mutational network 
of the modifier lineage, as well as a direct cost or benefit sm that captures 
the immediate fitness effect of the modifier allele in the genetic back-
ground where it arises. We call such a mutation an ‘evolvability modifier’ 
if it alters either the fitness landscape [Xm(⋅) ≠ X(⋅) + sm], the mutational 
network [Mm(⋅, ⋅) ≠ M(⋅, ⋅)] or some combination of the two. This defini-
tion is consistent with the operational notion of evolvability in  
refs. 8,45 and encompasses classical examples such as mutator 
alleles4,26,28 as well as shifts in the fitness landscape due to epistatic 
interactions with the modifier locus8,45. However, we note that it does 
not capture other notions of evolvability, for example, when the ben-
efits of the modifier are only revealed after a shift in environmental 
conditions62 or modifiers of other evolutionary parameters such as the 
recombination rate49, migration rate20 or pleiotropy77. Extensions to 
such scenarios remain an interesting avenue for future work.

Given the definitions above, the impact of an evolvability modifier 
can be equivalently described by how it changes the local DFE, which 
is defined by

μ(s| ⃗g ) = ∑
g⃗
′
M ( ⃗g → ⃗g

′
) × δ (s + X( ⃗g ) − X( ⃗g

′
)) , (10)

where δ(⋅) is the Dirac delta function. This distribution is normalized 
so that μ(s| ⃗g )ds  represents the total rate that an individual with geno-
type ⃗g  produces mutations with fitness effects in the range s ± ds/2. 
This mutational neighbourhood can in principle vary with the genetic 
background ⃗g  due to epistatic interactions in the fitness landscape 
X( ⃗g )  and/or the mutational network M( ⃗g , ⃗g

′
). For most of this work, we 

will assume that this background dependence can be captured by the 
minimal modifier model,

μ(s| ⃗g ) ≈ {
μ(s) if gm = 0,

μm(s) if gm = 1,
(11)

in which the wildtype and modifier DFEs can differ from each other 
but remain approximately constant over the relevant genetic distance 
scales. This minimal model can be viewed as the lowest-order term in 
a more general expansion in the genotype dependence of the DFE:

μ(s| ⃗g ) ≈ μ(s) +∑
ℓ
δμℓ(s) × gℓ + ∑

ℓ<ℓ′
δμℓ,ℓ′ (s) × gℓgℓ′ + … , (12)

with a non-zero δμℓ(s) term at the modifier locus (ℓ = m) and all other 
δμℓ,…,ℓ′ terms vanishing (Extended Data Fig. 1 and Supplementary Sec-
tion 3.1). As above, equation (11) allows us to consider both classical 
mutator alleles (where μ(s) increases by a constant factor) as well as 
shifts in the underlying fitness landscape due to epistatic interactions 
with the modifier locus. It can also be viewed as a generalization of the 
‘survival of the flattest’ models in refs. 22,30 that incorporates benefi-
cial mutations.

We emphasize that our results do not require equation (11) to hold 
across the entire fitness landscape but only within a smaller region 
that is explored before the modifier either fixes or goes extinct. We 
determine the size of this local neighbourhood in Supplementary Sec-
tion 7 and find that it is often modest, corresponding to just a handful 
of mutational steps for many empirically relevant parameter values 
(Fig. 5b and Extended Data Fig. 3). We also show that the assumption 
in equation (11) is most sensitive to a narrow range of beneficial fitness 
effects, so that substantial deviations in other parts of the DFE can still 
have a negligible impact on the fate of the modifier mutation (Figs. 4 
and 5b and Supplementary Section 7). This more general definition of 
equation (11) applies for a broad range of epistatic fitness landscapes, 
as well as other relevant scenarios such as aneuploidy that are difficult 
to express in the traditional landscape picture; we consider several 
concrete examples in Supplementary Sections 3.1 and 7.

To quantify the net selection pressures on a given modifier, we 
considered its fixation probability, pfix(μ(s) → μm(s), sm), when arising 
in a steady-state population of adapting wildtype individuals (Fig. 1c). 
We use the term direct (or ‘first-order’) selection to refer to cases where 
μm(s) = μ(s), while indirect (or ‘second-order’) selection refers to cases 
where μm(s) ≠ μ(s).

Derivation of the conditional fixation probability
To derive the conditional fixation probability in equation (1), we use a 
key approximation from previous theoretical models of clonal interfer-
ence26,42,43,50 and assume that the fate of a successful modifier is deter-
mined while it is still at a low frequency in the population. This implies 
that (1) the mean fitness of the population will remain close to the 
wildtype trajectory [∂tX(t) ≈ v(μ(s),N) ≡ v] while the fate of the modifier 
is being determined and (2) that different individuals in the modifier 
lineage will either fix or go extinct independently. We discuss the condi-
tions of validity of this approximation in Supplementary Section 3.2 
and show that it is satisfied for a broad range of modifier alleles (with 
the exception of the strongest direct benefits, which we consider sepa-
rately below).

When this separation of timescales holds, the conditional fixation 
probability can be calculated by extending the branching process 
formalism in refs. 26,42,43,50. Briefly, if pe(x) denotes the extinction 
probability of a modifier lineage founded with initial relative fitness 
x, one can obtain a recursion relation for pe(x) by averaging over the 
offspring that the founding individual produces in the next generation. 
The resulting recursion relation is given by

pe(x) = ⟨pe(x − v)nc ∏
s

pe(x − v + s)nm(s)⟩ , (13)

where nc ~ Poisson[(1 + x)(1 − ∫ μm(s)ds)] denotes the number of clonal 
offspring of the founding individual, and nm(s) ~ Poisson[(1 + x)μm(s)ds] 
denotes the number of mutant offspring with fitness effect s. Equating 
the conditional fixation probability with the non-extinction probability 
of the branching process, we obtain equation (1) in the main text after 
expanding equation (13) to lowest order in x, μm(s), √v  and 
wm(x) ≡ 1 − pe(x). A more detailed derivation of equation (1) using a 
Langevin framework is outlined in Supplementary Section 3.2.

When μm(⋅) ≠ μ(⋅), the conditional fixation probability of an 
evolvability modifier will differ from that of a lineage under direct 
(or ‘first-order’) selection because different DFEs contribute to the 
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mutation and mean fitness terms in equation (1). However, as the 
wildtype DFE enters only through the rate of adaptation v(μ(s), N), 
the conditional fixation probability of a modifier can still be mapped 
to a direct selection scenario, in which the population is fixed for the 
modifier allele but has a different population size N* that satisfies

v(μm(s),N∗) = v(μ(s),N). (14)

This formal equivalence hints at a deeper relationship between direct 
and indirect selection, which we exploit in more detail below.

Solution for the simplest fitness landscape
To calculate the fixation probability of a modifier in the simplest fitness 
landscape in Fig. 2a, we sought an approximate analytical solution of 
equations (1) and (2) that applies for empirically relevant parameter 
regimes where sb ≫ Ub ≳ 1/N. We outline the key steps below, while a 
detailed derivation is provided in Supplementary Section 4.

Following previous work26,42,43,50, we found that the solution for 
the conditional fixation probability wm(x) can be decomposed into 
two characteristic regions depending on the size of the initial relative 
fitness x. For large values of x, the mutation term in equation (1) is 
negligible compared with the other three terms, and the solution is 
well approximated by

wm(x) ≈
2xcme(x

2−x2cm)/2v

1 + (xcm/x) e(x2−x
2
cm)/2v

, (15)

where xcm is a constant of integration that must be determined 
self-consistently below. In our parameter regime of interest, this ‘shoul-
der solution’ shows a sharp transition near xcm, switching from a linear 
scaling at high relative fitnesses [wm(x) ≈ 2x] to a more rapid decay 
when x < xcm (Fig. 1). This implies that xcm can be viewed as a ‘clonal 
interference threshold’ for the modifier lineage: modifiers with initial 
relative fitness greater than xcm will fix if they survive genetic drift, while 
modifiers with x < xcm will be strongly impacted by competition with 
the wildtype population.

For smaller values of x, the mutation term is no longer negligi-
ble, but the genetic drift term is now sub-dominant, and equation (1) 
reduces to the linear form,

0 ≈ x ×wm(x)⏟⎵⎵⏟⎵⎵⏟
selection

+U′
b
[wm (x + s′

b
) −wm(x)]⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟

mutation

− v × ∂xwm(x)⏟⎵⎵⎵⏟⎵⎵⎵⏟
competitionw/wt

. (16)

To solve this equation, it is useful to re-express it in the integral form,

wm(x) = e
(x−U′b)

2

2v ∫
x+s′b

−∞

U′
b
v

× e
−(y−s′b−U′b)

2

2v wm( y)dy . (17)

In Supplementary Section 3.2, we show that this recursion relation 
has a natural interpretation as an average over the possible mutant 
offspring that are produced by the founding modifier clone. In our 
parameter regime of interest, the right-hand side of equation (17) is 
usually dominated by relative fitnesses y that are greater than or equal 
to those on the left-hand side. This implies that equation (17) is naturally 
telescoping: we can substitute equation (15) into the right-hand side 
of equation (17) and recursively extend wm(x) to progressively lower 
fitness values. We carry out this procedure in Supplementary Section 4  
to obtain a solution for wm(x) that is valid across the full range of rela-
tive fitness values.

The constant of integration in equation (15) can be determined by 
the requirement that equations (15) and (17) should match in the over-
lap region immediately below xcm where both approximations are valid. 
This constraint allows us to solve for xcm as a function of s′b, U′

b, and the 
wildtype’s rate of adaptation v. For modifiers with small or moderate 
indirect effects, this solution takes on a particularly simple form,

xcm ≈ v
s′b

log (
s′b
U′

b
) +

s′b
2 , (18)

which applies when xcm ≳ s′b.
To calculate the net fixation probability of the modifier in equa-

tion (2), we must average the solution for wm(x) over the distribution 
of parental fitnesses f(x), which has been characterized in previous 
work43,50. In our parameter regime of interest, this fitness distribution 
is well approximated by a truncated Gaussian profile,

f(x) ≈ {
1

√2πv
e−

x2

2v x ≤ xc ,

0 x > xc.
(19a)

where the maximum fitness xc coincides with the interference threshold 
in equation (18) when s′b = sb and U′

b = Ub,

xc ≈
v
sb

log ( sb
Ub

) + sb
2 , (19b)

and the variance coincides with the rate of adaptation,

v ≈
2s2b log(Nsb)

log2(sb/Ub)
. (19c)

Substituting these expressions into equation (2) and integrating over 
the parental fitness x, we obtain an approximate solution for the scaled 
fixation probability,

log ̃pfix(μ(s) → μm(s), sm) ≈
⎧
⎨
⎩

x2c
2v
− x2cm

2v
+ (xcm−s′b)sm

v
sm < 0,

x2c
2v
− x2cm

2v
+ xcmsm

v
sm > 0,

(20)

which includes only the leading order terms from the full expressions 
in Supplementary Section 4.1. Equations (3)–(7) in the main text are 
all obtained by considering limiting cases of this basic expression, 
using equations (18) and (19) to substitute for xcm, xc and v, and  
taking the limit that xc ≫ sb ≫ √v  (Supplementary Section 4.1).  
Analogous expressions for more strongly selected modifiers,  
where equation (18) breaks down, are derived in Supplementary  
Section 4.2.

Fixation probability of an evolutionary dead end
Modifiers with sufficiently large indirect costs but strong direct ben-
efits cannot be captured by the branching process approximation in 
equation (1), as their long-term success requires them to grow to a 
sufficient size where they start to influence the adaptation of the 
wildtype. The most extreme example of this behaviour occurs for an 
evolutionary ‘dead end’ (illustrated by the s′b = 0 line in Fig. 3b), which 
is unable to produce further beneficial mutations.

We can extend our solution to this case by explicitly consider-
ing the dynamics of the modifier lineage over time (Supplemen-
tary Section 4.1.6). At short times, these dynamics will still be well 
approximated by the branching process model above. A dead-end 
modifier that arises with an initial relative fitness x will found a clone 
that grows as

fm(t) ≈
⎧
⎨
⎩

ext−
vt2
2

2Nx
with probability 2x,

0 else ,
(21)

which accounts for the stochastic effects of genetic drift, as well as the 
constant adaptation of the background population (Supplementary 
Section 3.2). If the initial fitness of the modifier is small enough that 
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fm(t) remains small at later times, then the background population 
will always overtake the modifier and eventually drive it to extinction.  
For larger values of x, the modifier will eventually grow to macroscopic 
frequencies (for example, 10%), and equation (21) will start to break 
down. During this time, the background population will have increased 
in fitness by vt*, where t* is defined by fm(t*) ≈ 0.1. In Supplementary 
Section 4.1.6, we show that once the modifier reaches this intermedi-
ate size, it will transition to >90% frequency extremely rapidly, while 
the background fitness distribution is effectively frozen in place.  
If the nose of the fitness distribution has caught up to the modifier 
in this time (xc + vt* > x), then the dead-end lineage is still destined 
for extinction once these fitter individuals start to expand. However,  
if x ≳ xc + vt*, then the modifier clone will rapidly proceed to fixation 
before the background population can catch up. This analysis suggests 
that the conditional fixation probability of a dead-end modifier can be 
approximated by

wm(x) ≈ {
2x if x > xcm

0 if x < xcm,
(22a)

with an effective interference threshold,

xcm ≈ xc + vt∗ ≈ √2 × xc. (22b)

A more detailed derivation is presented in Supplementary Section 4.1.6, 
which allows us to calculate the next-order correction to xcm that we use 
for our numerical comparisons in Fig. 3. Substituting this expression 
into equation (2) yields an analogous formula for the overall fixation 
probability of a dead-end modifier,

log ̃pfix(μ(s) → 0, sm) ≈ log∫
xc(sm−xcm+xc)

v

0
e
u− vu2

2x2c du, (23)

which shows that direct fitness benefits as small as sm ≈ xcm − xc ≈ 0.4xc 
will be sufficient to make them strongly favoured by natural selection.

To account for these nonlinear feedbacks more generally, we 
use equation (23) in place of equation (20) whenever the interfer-
ence threshold in equation (18) is larger than upper bound implied by 
equation (22).

Continuous distributions of fitness effects
To extend our results to continuous distributions of fitness effects, 
we sought an analogous solution of equation (1) for scenarios where 
the wildtype DFE can be analysed using the approaches developed 
in refs. 42,43,50 (Supplementary Section 5). We find that the con-
ditional fixation probability can again be approximated by a gener-
alization of equations (15) and (17). The large x solution is the same as  
equation (15), but the interference threshold (xcm) is now determined 
by a more complex condition,

1 ≈
√2πv

2xcmve−
x2cm
2v

∫ μm(s) × pfix(s|μm(s),N∗)ds, (24)

where pfix(s∣μm(s), N*) is the fixation probability of an ordinary beneficial 
mutation in a population with a background DFE μm(s) and a popula-
tion size N* defined by equation (14). Writing μm(s) ≡ μ(s) + δμ(s), we 
can distinguish between two broad regimes depending on whether 
μ(s) or δμ(s) provides the dominant contribution to the integral in 
equation (24).

When the integral in equation (24) is dominated by the contribu-
tions from μ(s), then xcm will remain close to the wildtype interfer-
ence threshold xc. This allows us to calculate xcm and pfix(μ(s) → μm(s), 
sm) perturbatively, by treating the δμ(s) term as a small parameter  
(Supplementary Section 5.2). Writing xcm = xc + δxc, we can perform 

a Taylor expansion in δμ(s) to obtain an approximate analytical  
expression for δxc:

δxc ≈ − v
sb

∫ δμ(s)
Ub

̃pfix(s|μ(s),N)
̃pfix(sb|μ(s),N)

ds, (25)

where sb ≡ sb(μ(s), N) and Ub ≡ Ub(μ(s), N) are the effective parameters for 
the wildtype DFE, and ̃pfix(s|μ(s),N) is the fixation probability of a first-order 
mutation from equation (5). We obtain the result in equation (8) by sub-
stituting equation (25) into equation (20) and using the expression for 
̃pfix(s|μ(s),N) from equation (5).

By contrast, when equation (24) is dominated by the contributions 
from δμ(s), the integral will often be strongly peaked around a charac-
teristic value s′b, which is defined by

s′b ≡ argmax
s

{δμ(s) × pfix(s|μm(s),N∗)} (26)

The corresponding mutation rate U′
b is then defined by taking a Laplace 

approximation of the integral,

∫ δμ(s) × pfix(s|μm(s),N∗)ds ≈ U′
b × pfix (s′b|μm(s),N∗) , (27)

which yields the single-s mapping in equation (9). A more detailed 
derivation of these results, as well as explicit calculations of the effec-
tive parameters for different choices of μ(s) and μm(s), can be found in 
Supplementary Section 5. In Supplementary Section 6, we show how 
these results can be extended to account for changes in the strongly 
deleterious portion of the DFE.

Forward time simulations
We validated our theoretical predictions by comparing them to 
forward-time, Wright–Fisher-like simulations similar to those used by 
ref. 26. We begin with a population of N wildtype individuals at genera-
tion 0. In each generation, every individual i in the population produces

nc(i) ∼ Poisson (C(t) × (1 + Xi − X(t)) × (1 −∫μ(s)ds)) (28a)

clonal offspring and

nm(i) ∼ Poisson (C(t) × (1 + Xi − X(t)) ×∫μ(s)ds) (28b)

mutant offspring, where Xi is the absolute fitness of the individual, 
X = ∑iXi/∑i1 is the mean fitness of the population, and C(t) = N/∑i 1 is a 
normalization constant that ensures that the expected population size 
in the next generation is equal to N. Each mutant offspring is assigned a 
new fitness value Xi + s, where s is randomly sampled from the normalized 
version of μ(s). After initialization, each simulation is allowed to ‘burn in’ 
for Δt = 2 × 104 generations so that it reaches a well-defined steady state.

To measure the fixation probability of a modifier lineage, we con-
tinue this basic algorithm while allowing individuals in the wildtype 
population to produce new modifier offspring at a per capita rate Um. 
These modifier individuals reproduce according to an analogous ver-
sion of equation (28), with μ(s) → μm(s). Reversions from modifier to 
wildtype genotypes are not allowed. Following the burn-in period, we 
record the number of generations that elapse until a modifier lineage 
fixes in the population. In the limit that Um → 0, this fixation time T is 
related to the fixation probability through the relation

̃pfix(μ(s) → μm(s), sm) =
1

Um⟨T⟩
. (29)

For the estimator in equation (29) to apply, Um must be small enough 
that the total time to fixation is much larger than the predicted sweep 
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time of a successful modifier (≅xcm/v). To ensure that this is true, we 
repeat this process of measuring the fixation time for a sequence of 
M = 60 independent simulations with a sequence of modifier mutation 
rates Um,1, Um,1,…Um,M, yielding a sequence of fixation times T1, T2, …Tm; 
the mutation rate in simulation i is chosen based on the previous Ti−1,

Um,i ≡ min {
Um,i−1Ti−1

T∗
, 10−2} , (30)

so that the predicted value of Ti is T* ≡ 250 × xcm/v generations. The 
mutation rate is also capped at 10−2 so that successful modifier lineages 
primarily compete against the background population while small.  
The sequence is started at Um,i−1 = 1/T* and allowed to ‘burn in’ for 10 
iterations before the Ti are recorded. The fixation probability is calcu-
lated from the maximum likelihood estimator,

̃pfix(μ(s) → μm(s), sm) ≈
1

1
50
∑60

i=10 Um,iTi

. (31)

Numerical procedures used for calculating the theoretical curves in 
each of the figures are described in Supplementary Section 8.

Empirical example from Fig. 1
The relative fitness estimates for the modifier example in Fig. 1a were 
obtained from ref. 8. This study examined two strains of E. coli that 
were isolated from generation 500 of Lenski’s long-term evolution 
experiment78. Relative fitnesses of the two strains at the first time point 
in Fig. 1a were obtained from head-to-head competitions under the 
same conditions as the original experiment. We converted the W values 
reported by ref. 8 into relative (log) fitness estimates using the proce-
dure described in Supplementary Section 8. This yielded a log fitness 
difference of ΔX = −4.4% (−4.17%, −4.66%) (mean and 95% confidence 
intervals from replicate competition assays). The fitness measurements 
at the second time point were obtained after evolving each isolate for 
an additional 883 generations in 20 independent replay experiments 
and performing pooled fitness measurements of the evolved popula-
tions. Numerical conversion of the corresponding W values yielded a 
log fitness difference of ΔX = 1.4% (0.2%, 2.6%).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Fitness measurements and confidence intervals in Fig. 1a were obtained 
from the Supplementary Information of ref. 8. Simulation results in the 
remaining figures are available in the accompanying source data files. 
Source data are provided with this paper.

Code availability
Source code for forward-time simulations, numerical calculations 
and figure generation are available via Github (https://github.com/
bgoodlab/evolution_of_evolvability).
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Extended Data Fig. 1 | Examples of epistatic fitness landscapes that satisfy 
the minimal model in Fig. 1. (a) The evolvability modifier in Fig. 1b can be viewed 
as the lowest order term in a general macroscopic epistasis expansion (left, SI 
Section 3.1). Different fitness landscapes can produce the same macroscopic 
behavior. (b,c) Examples of highly epistatic fitness landscapes that satisfy the 
simple model above. (b) A ‘maximally epistatic’ landscape of branching uphill 
paths, which generalizes the model in refs. 79,80. Each step k = 1, …, K of a given 
path can access M ≪ L beneficial mutations; all other genotypes have fitness zero. 

(c) A fitness landscape formed by a non-linear combination of two global 
phenotypes, for example, stability, Φ(g⃗ ), and activity, Ψ(g⃗ ). Individual 
mutations can affect both traits simultaneously (right). Stabilizing mutations can 
act like modifier alleles by potentiating the fitness benefits of mutations that 
would destabilize the protein on their own (left). In particular, a strongly 
stabilizing mutation can allow K ≈ ϕm/∣ϕℓ∣ new mutations to accumulate before 
their effects on stability become important. See SI Section 3.1 for more details.

http://www.nature.com/natecolevol


Nature Ecology & Evolution

Article https://doi.org/10.1038/s41559-024-02527-0

Extended Data Fig. 2 | Deleterious mutations and indirect selection for 
robustness. (a) A generalization of the simplified model in Fig. 5a, where the 
modifier can also shift the typical fitness cost sd. (b, c) Fixation probability of a 
robustness-enhancing modifier with U′

d
< Ud  (and all other parameters are held 

fixed). Symbols denote the results of forward time simulations for N = 108,  
sb = 10−2, and Ub = 10−5, while solid lines denote our theoretical predictions in SI 
Section 6. Panel (b) shows that the purgeable mutations approximation holds 
across a broad range of fitness costs, with the dashed line marking the predicted 
transition to quasi-neutrality (∣sd∣ ≈ v/xc). Panel (c) shows that selection for 
increased robustness is relatively weak unless Ud ≳ sb (dashed line). (d) Fixation 
probability of a modifier that imposes a tradeoff between robustness and 
evolvability by increasing the strength of selection on beneficial and deleterious 

mutations simultaneously. Results are shown for sb = ∣sd∣ = s and Ud = 10−2, with the 
remaining parameters the same as panel b. Since Ud ≫ Ub, this example shows that 
strong selection for evolvability can occur for modifiers reduce the average 
fitness effect of mutations (Δs ∝ UbΔs− UdΔs < 0). (e) Fixation probability of 
modifier that enhances robustness and evolvability at the same, by shifting 
mutations from deleterious to beneficial (Ud − U′

d
= U′

b
− Ub). Symbols denote 

results of forward-time simulations with sd = − 10−2 and Ud = 10−2, with the 
remaining parameters the same as panel (b). Lines denote our theoretical 
predictions in the absence of deleterious mutations (Ud = U′

d
= 0). This example 

shows that enhancements in evolvability are weighted more strongly than 
comparable increases in robustness, even when nearly all new mutations are 
deleterious (Ub ≪ Ud).
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Extended Data Fig. 3 | Relaxing the assumption that modifiers permanently 
change the mutation spectrum. An alternative version of the model in Fig. 5c, 
where the modifier reverts to an evolutionary dead-end (μm(s) = 0) after K 
mutations. Symbols denote the results of forward-time simulations for N = 108,  
sb = 10−2, and Ub = 10−5, while the line denotes our theoretical predictions for the 

minimal modifier model in Fig. 1b (that is K = ∞). Even in this extreme case, our 
minimal modifier model (solid line) remains highly accurate for moderate values 
of K, and as little as K = 1 in the quasi-sweeps regime. This demonstrates that large 
populations can only ‘see’ across the fitness landscape for ≈ xcm/s′b additional 
mutations (SI Section 7.2).
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Extended Data Fig. 4 | Selection for evolvability in the presence of 
diminishing returns epistasis. (a, b) A simple model of global diminishing 
returns epistasis motivated by the empirical example in ref. 58 (SI Section 7.3). 
The fitness effects of new mutations shrink as the population adapts (panel a), 
leading to a decelerating rate of adaptation over time (panel b). Points denote the 
results of forward-time simulations for the distribution of fitness effects 
μ(s|g⃗ ) = Ub ⋅ δ(s− ̃sb ⋅ e−X(g⃗ )/θ), with Ub = 10−5, ̃sb = 10−1, θ = 0.2, and N = 107; 
points are connected by solid lines to aid visualization. (c, d) The fixation 
probability of an evolvability modifier that arises at the beginning of the inset in 
panel a, where the fitness trajectory is still decelerating. Green symbols in (c) 
show a selection-strength modifier with the same diminishing returns schedule 

as the background population (θm ≈ θ), while the blue symbols show an alternate 
example where the modifier avoids future diminishing returns once it arises  
(θm ≈ ∞). The green line illustrates the predictions from the ‘adiabatic’ 
approximation in SI Section 7.3, demonstrating that the permanent modifier 
model [μm(s|g⃗ ) ≈ μm(s) ] provides a good approximation when the local 
selection strengths are properly renormalized. The blue line shows the 
predictions from our heuristic analysis in SI Section 7.3, which accounts for the 
additional benefits that accrue for the modifier lineage when θm ≫ θ (panel d). 
This example illustrates that the evolvability advantages that accrue from large 
differences in diminishing returns epistasis can drive modest deviations from our 
existing theory when θ grows close to xc.
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Extended Data Table 1 | Table of mathematical symbols. Definitions of mathematical symbols used in the main text, along 
with locations where they are used
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